Magnetocaloric effect and critical magnetic behavior in Ni-rich Ni–Mn–Sn full Heusler alloy


In search of low-cost, hysteresis-free, broad working temperature magnetocaloric materials, Ni2.24Mn0.76Sn Heusler alloy has been prepared by the conventional arc melting method. The XRD pattern reveals that the sample is crystallized in Fm \(\overline{3}\) m space group in L21 cubic symmetry. The Maxwell's equation is employed on magnetic isotherms to determine the change in magnetic entropy. This alloy gives a reasonable magnetocaloric effect (\(\Delta S_{M}\) = 1.25 J/Kg-K and RCP = 83.87 J/Kg at 3 T) with a large working temperature (67 K at 3 T) near the room temperature. Critical exponents have been calculated using modified Arrott plot, Kouvel–Fisher plot, and critical isotherm analysis to understand the nature of phase transition and exchange interaction, causing magnetic ordering in the system. The values of critical exponents (β = 0.454 ± 0.015, γ = 1.145 ± 0.035, δ = 3.522 ± 0.009) and range of exchange interaction (σ = 1.698) fall in between long-range mean-field theory and short-range 3D Heisenberg model, indicating the complex nature of exchange interaction.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    A.U. Saleehen, J.H. Chen, D.P. Young, I. Dubenko, N. Ali, S. Stadler, J. App. Phys. 123, 203904 (2018)

    ADS  Article  Google Scholar 

  2. 2.

    M. Nazmunnahar, T. Ryba, J.J. Del Val, M. Ipatov, J. Gonzalez, V. Haskova, P. Szabo, P. Samuely, J. Kravcak, Z. Vargova, R. Varga, J. Magn. Magn. Mater. 386, 98 (2015)

    ADS  Article  Google Scholar 

  3. 3.

    T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, A. Planes, E. Suard, B. Ouladdiaf, Phys. Rev. B 75, 104414 (2007)

    ADS  Article  Google Scholar 

  4. 4.

    A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and Its Application (IOP, London, 2003).

    Google Scholar 

  5. 5.

    V.K. Pecharsky, K.A. Gschneidner, Phys. Rev. Lett. 78, 4494 (1997)

    ADS  Article  Google Scholar 

  6. 6.

    V.K. Sharma, M.K. Chattopadhyay, R. Kumar, T. Ganguli, P. Tiwari, S.B. Roy, J. Phys.: Condens. Matter. 19, 496207 (2007)

    Google Scholar 

  7. 7.

    T. Kaneko, H. Yoshida, S. Abe, K. Kamigaki, J. Appl. Phys. 52, 2046 (1981)

    ADS  Article  Google Scholar 

  8. 8.

    S. Chatterjee, S. Giri, S.K. De, S. Majumdar, J. Phys. Conf. ser. 200, 032011 (2010)

    Article  Google Scholar 

  9. 9.

    N.V. Rama Rao, V. Chandrasekaran, K.G. Suresh, J. Appl. Phys. 108, 043913 (2010)

    ADS  Article  Google Scholar 

  10. 10.

    R. Sahoo, A.K. Nayak, K.G. Suresh, A.K. Nigam, J. Magn. Magn. Mater. 324, 1267 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    T.L. Phan, P. Zhang, N.H. Dan, N.H. Yen, P.T. Thanh, M.H. Phan, S.C. Yu, App. Phys. Lett. 101, 212403 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    G. Fischer, X. Zubizarreta, A. Marmodoro, M. Hoffmann, P. Buczek, N. Buczek, M. Dane, W. Hergert, E. Sasioglu, I. Galanakis, A. Ernst, Phys. Rev. Mater. 4, 064405 (2020)

    Article  Google Scholar 

  13. 13.

    R.B. Helmholdt, K.H.J. Buschow, J. Less-Common Met. 128, 167 (1987)

    Article  Google Scholar 

  14. 14.

    P. Entel, V.D. Buchelnikov, V.V. Khovailo, A.T. Zayak, W.A. Adeagbo, M.E. Gruner, H.C. Herper, E.F. Wassermann, J Phys. D: Appl. Phys. 39, 865 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    K.H.J. Buschow, P.G. van Engen, D.B. de Mooij, J. Mag. Mag. Mat. 40, 339 (1984)

    ADS  Article  Google Scholar 

  16. 16.

    R.L. Hadimani, Y. Melikhov, J.E. Snyder, D.C. Jiles, J. Magn. Magn. Mater. 320, e696 (2008)

    ADS  Article  Google Scholar 

  17. 17.

    M.A. Hamad, Phase Transitions 85, 106 (2012)

    Article  Google Scholar 

  18. 18.

    P. Gebara, J. Marcin, I. Skorvanek, J. Elect. Mater. 46, 6518 (2017)

    ADS  Article  Google Scholar 

  19. 19.

    R.M. Nassri, Bull. Mater. Sci. 39, 551 (2016)

    Article  Google Scholar 

  20. 20.

    S. Kavita, G. Anusha, P. Bhatt, V. Suresh, R. Vijay, K. Sethupathi, R. Gopalan, J. Alloys Comp. 817, 153232 (2020)

    Article  Google Scholar 

  21. 21.

    P. Zhang, T.L. Phan, N.H. Dan, T.D. Thanh, S.C. Yu, J. Alloys Comp. 615, S335 (2014)

    Article  Google Scholar 

  22. 22.

    V. Franco, A. Conde, Int. J. Refrig. 33, 465 (2010)

    Article  Google Scholar 

  23. 23.

    V. Franco, J.S. Blázquez, A. Conde, Appl. Phys. Lett. 89, 222512 (2006)

    ADS  Article  Google Scholar 

  24. 24.

    P. Gębara, Rare Metals (2017).

    Article  Google Scholar 

  25. 25.

    P. Gebara, J. Kovac, J. Magn. Magn. Mater. 454, 298 (2018)

    Article  Google Scholar 

  26. 26.

    P. Gebara, J. Kovac, Mater. Des. 129, 111 (2017)

    Article  Google Scholar 

  27. 27.

    J.Y. Law, V. Franco, L.M.M. Ramirez, A. Conde, D.Y. Karpenkov, L. Radulov, K.P. Skokov, O. Gutfleisch, Nat. Commun. 9, 2680 (2018)

    ADS  Article  Google Scholar 

  28. 28.

    S. Datta, S. Guha, S. Panda, M. Kar, Phys. StatusSolidiB. 257, 2000123 (2020).

    ADS  Article  Google Scholar 

  29. 29.

    H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford, London, 1971).

    Google Scholar 

  30. 30.

    U. Devarajan, M. Kannan, R. Thiyagarajan, M.M. Raja, N.V.R. Rao, S. Singh, D. Venkateshwarlu, V. Ganesan, M. Ohashi, S. Arumugam, J. Phys. D: Appl. Phys. 49, 065001 (2016)

    ADS  Article  Google Scholar 

  31. 31.

    W.Z. Nan, T.D. Thanh, G. Nan, T.S. You, H.G. Piao, L.Q. Pan, S.C. Yu, J. Magn. Magn. Mat. 443, 171 (2017)

    ADS  Article  Google Scholar 

  32. 32.

    A.G. Varzaneh, P. Kameli, T. Amiri, K.K. Ramachandran, A. Mar, I.A. Sarsari, J.L. Luo, T.H. Etsell, H. Salamati, J. Alloys Compd. 708, 34 (2017)

    Article  Google Scholar 

  33. 33.

    S.K. Banerjee, Phys. Lett. 12, 16 (1964)

    ADS  Article  Google Scholar 

  34. 34.

    A. Arrott, J.E. Noakes, Phys. Rev. Let. 19, 786 (1967)

    ADS  Article  Google Scholar 

  35. 35.

    B. Widom, J. Chem. Phys. 41, 1633 (1964)

    ADS  Article  Google Scholar 

  36. 36.

    J.S. Kouvel, M.E. Fisher, Phys. Rev. 136, 1626 (1964)

    ADS  Article  Google Scholar 

  37. 37.

    S. Murakami, N. Nagaosa, Phys. Rev. Lett. 90, 197201 (2003)

    ADS  Article  Google Scholar 

  38. 38.

    M.E. Fisher, S.K. Ma, B.G. Nickel, Phys. Rev. Lett. 29, 917 (1972)

    ADS  Article  Google Scholar 

  39. 39.

    A. Hamzic, R. Asomoza, I.A. Campbell, J. Phys. F: Met. Phys. 11, 1441 (1981)

    ADS  Article  Google Scholar 

  40. 40.

    Y. Noda, Y. Ishikawa, J. Phys. Soc. Jpn. 40, 690 (1976)

    ADS  Article  Google Scholar 

  41. 41.

    T. Shinohara, J. Phys. Soc. Jpn. 28, 313 (1970)

    ADS  Article  Google Scholar 

  42. 42.

    P. Gebara, M. Hasiak, J. Appl. Phys. 124, 083904 (2018)

    ADS  Article  Google Scholar 

Download references


Researchers would like to thank the CSIR and DST, Govt. of India for granting research fellowship.

Author information




SD has contributed 50% to the work; SG and SKP have contributed 10%each; and MK has contributed 30% to the work.

Corresponding author

Correspondence to Manoranjan Kar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Datta, S., Guha, S., Panda, S.K. et al. Magnetocaloric effect and critical magnetic behavior in Ni-rich Ni–Mn–Sn full Heusler alloy. Appl. Phys. A 127, 184 (2021).

Download citation


  • Heusler alloy
  • Phase transition
  • Magnetocaloric effect
  • Critical exponents
  • Exchange interaction