Radiation shielding competencies for waste soda–lime–silicate glass reinforced with Ta2O5: experimental, computational, and simulation studies

Abstract

In this study, the authors emphasized an incisive purpose as the valorization of waste soda–lime–silicate glass (SLS) for a potential gamma-rays shielding material. For this, xTa2O5-(100-x)SLS glass systems where x: 0, 0.005, 0.05, and 0.5 wt% were fabricated via conventional melting technique. The synthesized four glass specimens (RG and RGT1 to RGT3) were then subjected to physical, optical, and radiation shielding measurements. Simulation studies (MCNP-5) and theoretical computations (XCOM) were conducted to validate the findings. The results clearly showed that the insertion of Ta2O5 improved both physical and optical properties. In particular, RGT3, having a higher amount, possessed the highest glass density (ρglass) and refractive index (n) values. On the other hand, the transmission factor (TF) data revealed that increasing the thickness of the glass sample caused a notable decrease in the TF values. RG decreases from 92.233% to 78.461%, 61.562%, and 48.302% for thicknesses of 0.5 cm, 1.5 cm, 3 cm, and 4.5 cm. RGT3 shows the best radiation shielding potential out of the investigated waste SLS samples according to the several radiation shielding factors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Reference

  1. 1.

    M. Testa, O. Malandrino, M.R. Sessa, S. Supino, D. Sica, Long-term sustainability from the perspective of cullet recycling in the container glass industry: evidence from Italy. Sustainability. 9(10), 1752 (2017). https://doi.org/10.3390/su9101752 (Switzerland)

    Article  Google Scholar 

  2. 2.

    G. Hole, A.S. Hole, Recycling as the way to greener production: a mini review. J. Clean. Prod. 212, 910–915 (2019). https://doi.org/10.1016/j.jclepro.2018.12.080

    Article  Google Scholar 

  3. 3.

    H. Isa, The need for waste management in the glass industries: a review. Sci. Res. Essays. 3(7), 276–279 (2008)

    Google Scholar 

  4. 4.

    A. Mohajerani, J. Vajna, T.H.H. Cheung, H. Kurmus, A. Arulrajah, S. Horpibulsuk, Practical recycling applications of crushed waste glass in construction materials: a review. Constr. Build. Mater. 156, 443–467 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.005

    Article  Google Scholar 

  5. 5.

    J. Deschamps, B. Simon, A. Tagnit-Hamou, B. Amor, Is open-loop recycling the lowest preference in a circular economy? answering through LCA of glass powder in concrete. J. Clean. Prod. 185, 14–22 (2018). https://doi.org/10.1016/j.jclepro.2018.03.021

    Article  Google Scholar 

  6. 6.

    J.X. Lu, Y. Zhou, P. He, S. Wang, P. Shen, C.S. Poon, Sustainable reuse of waste glass and incinerated sewage sludge ash in insulating building products: functional and durability assessment. J. Clean. Prod. 236, 117635 (2019). https://doi.org/10.1016/j.jclepro.2019.117635

    Article  Google Scholar 

  7. 7.

    B.M. Scalet, M. Garcia Muñoz, Q. Sissa Aivi, S. Roudier, D.S. Luis, Best Available Techniques (BAT) Reference Document for the Manufacture of Glass. 2013.

  8. 8.

    J.D. Musgraves, J. Hu, L. Calvez, Springer Handbook of Glass (Springer, New York, 2019).

    Google Scholar 

  9. 9.

    M. Hasanuzzaman, A. Rafferty, M. Sajjia, A.G. Olabi, Properties of glass materials. Ref. Module. Mater. Sci. Mater. Eng. (2016). https://doi.org/10.1016/b978-0-12-803581-8.03998-9

    Article  Google Scholar 

  10. 10.

    M. Flood et al., Glass fines: a review of cleaning and up-cycling possibilities. J. Clean. Prod. 267, 121875 (2020). https://doi.org/10.1016/j.jclepro.2020.121875

    Article  Google Scholar 

  11. 11.

    Glass Recycling Facts - Glass Packaging Institute (2020), Available: https://www.gpi.org/glass-recycling-facts. Accessed 17 Sep 2020

  12. 12.

    Glass recycling – Current market trends - 2recovery (2020), Available https://www.recovery-worldwide.com/en/artikel/glass-recycling-current-market-trends_3248774.html. Accessed 17 Sep 2020

  13. 13.

    Statistics - FEVE (2020), Available: https://feve.org/about-glass/statistics/. Accessed 17 Sep 2020

  14. 14.

    M.I. Sayyed, Y. Elmahroug, B.O. Elbashir, S.A.M. Issa, Gamma-ray shielding properties of zinc oxide soda lime silica glasses. J. Mater. Sci. Mater. Electron. 28(5), 4064–4074 (2017). https://doi.org/10.1007/s10854-016-6022-z

    Article  Google Scholar 

  15. 15.

    B. Çetin, B.A. Yalçin, M. Albaşkara, Investigation of radiation shielding properties of soda-lime-silica glasses doped with different food materials. Acta Phys Pol A 132(3), 988–990 (2017). https://doi.org/10.12693/APhysPolA.132.988

    ADS  Article  Google Scholar 

  16. 16.

    R. Kurtulus, T. Kavas, Investigation on the physical properties, shielding parameters, glass formation ability, and cost analysis for waste soda-lime-silica (SLS) glass containing SrO. Radiat. Phys. Chem. 176(June), 109090 (2020). https://doi.org/10.1016/j.radphyschem.2020.109090

    Article  Google Scholar 

  17. 17.

    R. Kurtulus, T. Kavas, I. Akkurt, K. Gunoglu, An experimental study and WinXCom calculations on X-ray photon characteristics of Bi2O3- and Sb2O3-added waste soda-lime-silica glass. Ceram. Int. 46(13), 21120–21127 (2020). https://doi.org/10.1016/j.ceramint.2020.05.188

    Article  Google Scholar 

  18. 18.

    X. Lu, L. Deng, J. Du, Effect of ZrO2 on the structure and properties of soda-lime silicate glasses from molecular dynamics simulations. J. Non-Crystalline. Solids. 491(April), 141–150 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.04.013

    ADS  Article  Google Scholar 

  19. 19.

    B. Suhendro, Toward green concrete for better sustainable environment. Procedia. Eng. 95, 305–320 (2014). https://doi.org/10.1016/j.proeng.2014.12.190

    Article  Google Scholar 

  20. 20.

    P. Guo, W. Meng, H. Nassif, H. Gou, Y. Bao, New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Constr. Build. Mater. 257, 119579 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119579

    Article  Google Scholar 

  21. 21.

    E.M.M. Ewais, M.A.A. Attia, A.A.M. El-Amir, A.M.H. Elshenway, T. Fend, Optimal conditions and significant factors for fabrication of soda lime glass foam from industrial waste using nano AlN. J. Alloys. Compd. 747, 408–415 (2018). https://doi.org/10.1016/j.jallcom.2018.03.039

    Article  Google Scholar 

  22. 22.

    Aaboe, R., Oiseth, E., Hagglund, J., Granulated foamed glass for civil engineering applications. In: Recycled materials in road & airfield, (2005)

  23. 23.

    G. Lakshminarayana et al., Assessment of gamma-rays and fast neutron beam attenuation features of Er2O3-doped B2O3–ZnO–Bi2O3 glasses using XCOM and simulation codes (MCNP5 and Geant4). Appl. Phys. A Mater. Sci. Process. 125(11), 1–14 (2019). https://doi.org/10.1007/s00339-019-3099-2

    Article  Google Scholar 

  24. 24.

    R. Elsaman et al., (59.5–x) P2O5–30Na2O–10Al2O3–0.5CoO–xNd2O3 glassy system: an experimental investigation on structural and gamma-ray shielding properties. Appl. Phys. A. Mater. Sci. Process. 126(7), 1–13 (2020). https://doi.org/10.1007/s00339-020-03697-x

    Article  Google Scholar 

  25. 25.

    M.I. Sayyed et al., Structural, optical, and shielding investigations of TeO2–GeO2–ZnO–Li2O–Bi2O3 glass system for radiation protection applications. Appl. Phys. A. Mater. Sci. Process. 125(6), 1–8 (2019). https://doi.org/10.1007/s00339-019-2709-3

    Article  Google Scholar 

  26. 26.

    R. El-Mallawany, F.I. El-Agawany, M.S. Al-Buriahi, C. Muthuwong, A. Novatski, Y.S. Rammah, Optical properties and nuclear radiation shielding capacity of TeO2-Li2O-ZnO glasses. Opt. Mater. Amst. 106(April), 109988 (2020). https://doi.org/10.1016/j.optmat.2020.109988

    Article  Google Scholar 

  27. 27.

    Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses. Ceram. Int. 46, 2055–2062 (2020)

    Article  Google Scholar 

  28. 28.

    S. Kaewjaeng et al., High transparency La2O3-CaO-B2O-SiO2 glass for diagnosis X-rays shielding material application. Radiat. Phys. Chem. 160, 41–47 (2019). https://doi.org/10.1016/j.radphyschem.2019.03.018

    ADS  Article  Google Scholar 

  29. 29.

    I. Akkurt, H.O. Tekin, Radiological parameters for bismuth oxide glasses using Phy-X/PSD software. Emerg. Mater. Res. 9(3), 1–9 (2020). https://doi.org/10.1680/jemmr.20.00209

    Article  Google Scholar 

  30. 30.

    Y.S. Rammah et al., SnO Reinforced silicate glasses and utilization in gamma radiation shielding applications. Emerg. Mater. Res. 9(3), 1–8 (2020). https://doi.org/10.1680/jemmr.20.00150

    Article  Google Scholar 

  31. 31.

    K.S. Mann, γ-ray shielding behaviors of some nuclear engineering materials. Nucl. Eng. Technol. 49(4), 792–800 (2017). https://doi.org/10.1016/j.net.2016.12.016

    Article  Google Scholar 

  32. 32.

    M.I. Sayyed, K.M. Kaky, D.K. Gaikwad, O. Agar, U.P. Gawai, S.O. Baki, Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). J. Non-Crystalline. Solids. 507(January), 30–37 (2019). https://doi.org/10.1016/j.jnoncrysol.2018.12.010

    ADS  Article  Google Scholar 

  33. 33.

    M.I. Sayyed, K.M. Kaky, E. Şakar, U. Akbaba, M.M. Taki, O. Agar, Gamma radiation shielding investigations for selected germanate glasses. J. Non-Crystalline. Solids 512(February), 33–40 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.02.014

    ADS  Article  Google Scholar 

  34. 34.

    M.I. Sayyed, Y.S. Rammah, F. Laariedh, A.S. Abouhaswa, T.B. Badeche, Effect of Bi2O3 on some optical and gamma-photon-shielding properties of new bismuth borate glasses. Appl. Phys. A. Mater. Sci. Process 125(9), 1–9 (2019). https://doi.org/10.1007/s00339-019-2958-1

    Article  Google Scholar 

  35. 35.

    M.I. Sayyed, M. Çelikbilek Ersundu, A.E. Ersundu, G. Lakshminarayana, P. Kostka, Investigation of radiation shielding properties for MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses. Radiat. Phys. Chem. 144, 419–425 (2018). https://doi.org/10.1016/j.radphyschem.2017.10.005

    ADS  Article  Google Scholar 

  36. 36.

    R. Bagheri, A. Khorrami Moghaddam, H. Yousefnia, Gamma ray shielding study of barium–bismuth–borosilicate glasses as transparent shielding materials using mcnp-4c code, xcom program, and available experimental data. Nucl. Eng. Technol. 49(1), 216–223 (2017). https://doi.org/10.1016/j.net.2016.08.013

    Article  Google Scholar 

  37. 37.

    A. Kumar, Gamma ray shielding properties of PbO-Li2O-B2O3 glasses. Radiat. Phys. Chem. 136, 50–53 (2017). https://doi.org/10.1016/j.radphyschem.2017.03.023

    ADS  Article  Google Scholar 

  38. 38.

    D.E. Vernacotola, Alkali niobium and tantalum silicate glasses and ferroelectric glass-ceramics. Mech. Corros. Prop. Ser. A. Key. Eng. Mater. 94–95, 379–408 (1994)

    Article  Google Scholar 

  39. 39.

    G.M. De Pietro et al., Thermal, structural, and crystallization properties of new tantalum alkali-germanate glasses. J. Am. Ceram. Soc. 98(7), 2086–2093 (2015). https://doi.org/10.1111/jace.13555

    Article  Google Scholar 

  40. 40.

    D. Adlienė, L. Gilys, E. Griškonis, Development and characterization of new tungsten and tantalum containing composites for radiation shielding in medicine. Nucl. Instrum. Methods. Phys. Res. Sect. B. Beam. Interact. Mater. Atoms. 467, 21–26 (2020)

    ADS  Article  Google Scholar 

  41. 41.

    A. Alalawi, Optical features and nuclear radiation shielding efficiency of ZnO-B2O3 -Ta2O5 glasses. Phys. Scr. 95(10), 105302 (2020). https://doi.org/10.1088/1402-4896/abb49d

    ADS  Article  Google Scholar 

  42. 42.

    I. Akkurt, S.S. Arda, K. Gunoglu, Variation of energy resolution with distance for a NaI(Tl) detector. Acta. Phys. Pol. A. 128(2), 422 (2015)

    Article  Google Scholar 

  43. 43.

    I. Akkurt et al., Monte Carlo simulation of a NaI(Tl) detector efficiency. Radiat. Phys. Chem. 176, 109081 (2020). https://doi.org/10.1016/j.radphyschem.2020.109081

    Article  Google Scholar 

  44. 44.

    I. Akkurt, K. Gunoglu, S.S. Arda, Detection efficiency of NaI(Tl) detector in 511–1332 keV energy range. Sci. Technol. Nucl. Install (2014). https://doi.org/10.1155/2014/186798

    Article  Google Scholar 

  45. 45.

    Y.Y. Çelen, A. Evcin, Synthesis and characterizations of magnetite–borogypsum for radiation shielding. Emerg. Mater. Res. (2020). https://doi.org/10.1680/jemmr.20.00098

    Article  Google Scholar 

  46. 46.

    I. Akkurt, Effective atomic and electron numbers of some steels at different energies. Ann. Nucl. Energy. 36–11(12), 1702–1705 (2009). https://doi.org/10.1016/j.anucene.2009.09.005

    Article  Google Scholar 

  47. 47.

    J. Briesmeister, MCNP – A general Monte Carlo Code For Neutron And Photon Transport. Report LA13709-M, Version 4C (National Laboratory, Los Alamos, 2000).

    Google Scholar 

  48. 48.

    Y.S. Rammah, A. Kumar, K.A. Mahmoud, R. El-Mallawany, F.I. El-Agawany, G. Susoy, H.O. Tekin, SnO-reinforced silicate glasses and utilization in gamma-radiation-shielding applications. Emerg. Mater. Res. (2020). https://doi.org/10.1680/jemmr.20.00150

    Article  Google Scholar 

  49. 49.

    I. Akkurt, H. Ozan Tekin, Radiological parameters for bismuth oxide glasses using phy-X/PSD software. Emerg. Mater. Res. (2020). https://doi.org/10.1680/jemmr.20.00209

    Article  Google Scholar 

  50. 50.

    H.O. Tekin, S.A.M. Issa, K.A. Mahmoud, F.I. El-Agawany, Y.S. Rammah, G. Susoy, M.S. Al-Buriahi, M.M. Abuzaid, I. Akkurt, Nuclear radiation shielding competences of Barium (Ba) reinforced borosilicate glasses. Emerg. Mater. Res. (2020). https://doi.org/10.1680/jemmr.20.00185

    Article  Google Scholar 

  51. 51.

    W.M. Abd-Allah, A.M. Fayad, H.A. Saudi, Effect of doping some lanthanide oxides on optical and radiation shielding properties of cadmium borate glasses. Opt. Quantum. Electron. 51(5), 1–14 (2019). https://doi.org/10.1007/s11082-019-1870-4

    Article  Google Scholar 

  52. 52.

    Y. Al-Hadeethi, M.I. Sayyed, H. Mohammed, L. Rimondin, X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies. Ceram. Int. 46, 251–257 (2020)

    Article  Google Scholar 

  53. 53.

    M.S. Gaafar, I.S. Mahmoud, Structural investigation and interpretation of some alkali lead borate glasses as radiation shielding materials. J. Aust. Ceram. Soc. 55(3), 865–872 (2019). https://doi.org/10.1007/s41779-018-00301-7

    Article  Google Scholar 

  54. 54.

    A.S. Asyikin, M.K. Halimah, A.A. Latif, M.F. Faznny, S.N. Nazrin, Physical, structural and optical properties of bio-silica borotellurite glass system doped with samarium oxide nanoparticles. J. Non-Crystalline. Solids 529(December), 119777 (2020)

    Article  Google Scholar 

  55. 55.

    E. Kavaz, H.O. Tekin, G. Kilic, G. Susoy, Newly developed Zinc-Tellurite glass system: an experimental investigation on impact of Ta2O5 on nuclear radiation shielding ability. J. Non-Crystalline. Solids 544(May), 120169 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120169

    Article  Google Scholar 

  56. 56.

    S.H. Elazoumi et al., Effect of PbO on optical properties of tellurite glass. Results. Phys. 8, 16–25 (2018). https://doi.org/10.1016/j.rinp.2017.11.010

    ADS  Article  Google Scholar 

  57. 57.

    M.D. Thombare, R.V. Joat, D.B. Thombre, Glasses study physical properties of sodiumborophosphate. Int. J. Eng. Sci. 6(7), 8482–8487 (2016)

    Google Scholar 

  58. 58.

    L. Cordeiro et al., Thermal and structural properties of tantalum alkali-phosphate glasses. J. Non-Crystalline. Solids 402, 44–48 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.05.015

    ADS  Article  Google Scholar 

  59. 59.

    B. Paula de Sousa, L.M. Marcondes, S.A. Maestri, C. Ramos da Cunha, F.C. Cassanjes, G.Y. Poirier, Phosphate glasses with high tantalum oxide contents: thermal, structural and optical properties. Mater. Chem. Phys. 239(May), 2020 (2019). https://doi.org/10.1016/j.matchemphys.2019.121996

    Article  Google Scholar 

  60. 60.

    A.M.O. Lima, J.F. Gomes, F.L. Hegeto, A.N. Medina, A. Steimacher, M.J. Barboza, Evaluation of TeO2 content on the optical and spectroscopic properties of Yb3 +-doped calcium borotellurite glasses. Spectrochim. Acta. Part. A. Mol. Biomol. Spectrosc. 193, 212–218 (2018). https://doi.org/10.1016/j.saa.2017.12.032

    ADS  Article  Google Scholar 

  61. 61.

    A.A. Ali, Y.S. Rammah, M.H. Shaaban, The influence of TiO2 on structural, physical and optical properties of B2O3 –TeO2 – Na2O – CaO glasses. J. Non-Crystalline. Solids. 514(February), 52–59 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.03.030

    ADS  Article  Google Scholar 

  62. 62.

    V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides I. J. Appl. Phys. 79(3), 1736–1740 (1996). https://doi.org/10.1063/1.360962

    ADS  Article  Google Scholar 

  63. 63.

    Y. Al-Hadeethi, M.I. Sayyed, BaO–Li2O–B2O3 glass systems: potential utilization in gamma radiation protection. Prog. Nucl. Energy 129, 103511 (2020)

    Article  Google Scholar 

  64. 64.

    SCHOTT AG, https://www.schott.com/Advanced_optics/English/Products/Optical-Materials/Special%20Materials/Radiation-Shielding-Glasses/Index.Html

  65. 65.

    R. Elsaman, S.A.M. Issa, H.O. Tekin, G. Susoy, A.A. Showahy, M.M. Elokr, T.T. Erguzel, Y.B. Saddeek, (59.5–x) P2O5–30Na2O–10Al2O3–05CoO–xNd2O3 glassy system: an experimental investigation on structural and gamma-ray shielding properties. Appl. Phys. A. 126, 502 (2020). https://doi.org/10.1007/s00339-020-03697-x

    ADS  Article  Google Scholar 

  66. 66.

    Y. Al-Hadeethi, M.I. Sayyed, Using Phy-X/PSD to investigate gamma photons in SeO2–Ag2O–TeO2 glass systems for shielding applications. Ceram. Int. 46, 12416–12421 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Taner Kavas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kavas, T., Kurtulus, R., Mahmoud, K.A. et al. Radiation shielding competencies for waste soda–lime–silicate glass reinforced with Ta2O5: experimental, computational, and simulation studies. Appl. Phys. A 127, 164 (2021). https://doi.org/10.1007/s00339-021-04323-0

Download citation

Keywords

  • Waste soda–lime–silicate glass
  • Gamma-rays shielding
  • MCNP-5
  • Optical properties
  • Radiation protection efficiency