Modification of magnetic properties, energy band gap and conduction mechanism of lanthanum orthochromite via (Sm, Fe) codoping

Abstract

We report our investigations on the magnetic, thermal, optical and dielectric properties of the nanocrystalline La0.7Sm0.3Cr1−xFexO3 (0 ≤ x ≤ 0.3) samples synthesized through sol–gel auto-combustion process. The maximum magnetization and coercive field increase in Fe-doped samples. Fourier transform infrared (FTIR) spectra reveal the metal–oxygen (Cr/Fe–O) stretching and bending modes of vibration. Thermal analysis illustrates the occurrence of structural phase transition at ~ 290 °C for the pristine sample, and the phase transition temperature rises with the increase in Fe concentration. The specific heat capacity at constant pressure also reflects this transition. The energy band gap reduces for the doped samples. Dielectric constant, dielectric loss and loss tangent exhibit the usual frequency dependence and decrease with the amount of Fe. The Giuntini law implies higher contribution of polaronic conduction in the doped samples. Electric modulus analysis also shows the manifestation of both short- and long-range-order conduction processes in this system. The Nyquist plots for both impedance and electric modulus emphasize that grains dominate the conduction process. Temperature-dependent impedance and electric modulus analysis established that the relaxation processes are thermally activated and deviate from the ideal Debye behaviour.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

References

  1. 1.

    J.R. Sahu, C.R. Serrao, N. Ray, U.V. Waghmare, C.N.R. Rao, J. Mater. Chem. 17, 42 (2007)

    Google Scholar 

  2. 2.

    V.A. Khomchenko, I.O. Troyanchuk, R. Szymczak, H. Szymczak, J. Mater. Sci. 43, 5662 (2008)

    ADS  Google Scholar 

  3. 3.

    T. Bora, S. Ravi, J. Appl. Phys. 114, 183902 (2013)

    ADS  Google Scholar 

  4. 4.

    B. Tiwari, A. Dixit, R. Naik, G. Lawes, M.S. Ramachandra, Appl. Phys. Lett. 103, 152906 (2013)

    ADS  Google Scholar 

  5. 5.

    A.P.B. Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, I. Panneer Muthuselvam, F.C. Chou, P.M. Md Gazzali, G. Chandrasekaran, J. Sol-Gel Sci. Technol. (2016). https://doi.org/10.1007/s10971-016-4151-8

    Article  Google Scholar 

  6. 6.

    M. Siemons, A. Leifert, U. Simon, Adv. Funct. Mater. 17, 2189 (2007)

    Google Scholar 

  7. 7.

    S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri, H. Alamdari, Chem. Rev. 114, 10292 (2014)

    Google Scholar 

  8. 8.

    S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    ADS  Google Scholar 

  9. 9.

    E. F. Bertaut, in Magnetism, edited by G. T. Rado and H. Suhl, Academic Press, New York Vol. III (1963) 149.

  10. 10.

    J.S. Zhou, J.A. Alonso, A. Muoñz, M.T. Fernández-Díaz, J.B. Goodenough, Phys. Rev. Lett. 106, 057201 (2011)

    ADS  Google Scholar 

  11. 11.

    P. Kumar, R.K. Singh, P. Singh, Trans. Ind. Ceram. Soc. 71, 175 (2012)

    Google Scholar 

  12. 12.

    G.H. Jonker, Physica 22, 707 (1956)

    ADS  Google Scholar 

  13. 13.

    N. Ray, U.V. Waghmare, Phys. Rev. B: Condens. Matter Mater. Phys. 77, 134112 (2008)

    ADS  Google Scholar 

  14. 14.

    P. Jha and A. K. Ganguli, Proc. Indian Acad. Sci. (Chem. Sci.) (2003) 431.

  15. 15.

    T. Yamaguchi, J. Phys. Chem. Solids 35, 479 (1974)

    ADS  Google Scholar 

  16. 16.

    N. Zarrin, S. Husain, S. Sharma, A. Somvanshi, S. Manzoor, W. Khan  J. Phys. Chem. Solids 138, 109281 (2020)

    Google Scholar 

  17. 17.

    B. Rajeswaran, D.I. Khomskii, A.K. Zvezdin, C.N.R. Rao, A. Sundaresan, Phys. Rev. B 86, 214409 (2012)

    ADS  Google Scholar 

  18. 18.

    G. Gorodetsky, S. Shaft, A. Shanlof, B.M. Wanklyn, B. Sharon, I. Yaegar. AIP Conf. Proc. 29 (1976).

  19. 19.

    A.K. Zvezdin, A.A. Mukhin, JETP Lett. 88, 505 (2008)

    ADS  Google Scholar 

  20. 20.

    E.F. Bertaut et al., J. Appl. Phys. 37, 1431 (1966)

    Google Scholar 

  21. 21.

    S. Wang, X. Wu, L. Yuan, C. Zhang, X. Cui, D. Lu, CrystEngComm 20, 3034 (2018)

    Google Scholar 

  22. 22.

    H. Nathani, S. Gubbala, R.D.K. Misra, Mater. Sci. Eng. B 121, 126 (2005)

    Google Scholar 

  23. 23.

    J. Dho, N.H. Hur, Solid State Commun. 138, 152 (2006)

    ADS  Google Scholar 

  24. 24.

    J.B. Goodenough, A. Wold, R.J. Arnitt, N. Menyuk, Phys. Rev. 124, 373 (1961)

    ADS  Google Scholar 

  25. 25.

    J.J. Neumeier, H. Terashita, Phys. Rev. B 70, 214435 (2004)

    ADS  Google Scholar 

  26. 26.

    T. Bora, S. Ravi, J. Magn. Magn. Mater. 358, 208 (2014)

    ADS  Google Scholar 

  27. 27.

    J. Nogues, I.K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999)

    ADS  Google Scholar 

  28. 28.

    J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro, Phys. Rep. 422, 65 (2005)

    ADS  Google Scholar 

  29. 29.

    M. Taheri, R.K. Kremer, S. Trudel, F.S. Razavi, J. Appl. Phys. 118, 124306 (2015)

    ADS  Google Scholar 

  30. 30.

    A. Punnoose, H. Magnone, M.S. Seehra, J. Bonevich, Phys. Rev. B 64, 174420 (2001)

    ADS  Google Scholar 

  31. 31.

    N. Zarrin, S. Husain, Appl. Phys. A 124, 730 (2018)

    ADS  Google Scholar 

  32. 32.

    M.C. Saine, E. Husson, H. Brusset, Spectrochim. Acta 37A, 985 (1981)

    ADS  Google Scholar 

  33. 33.

    F. Mayr, C. Hartinger, A. Loidl, Phys. Rev. B 72, 244251 (2005)

    Google Scholar 

  34. 34.

    R.J. Wiglusz, K. Kordek, M. Małecka, A. Ciupa, M. Ptak, R. Pazik, P. Pohl, D. Kaczorowski, Dalton Trans. 44, 20067 (2015)

    Google Scholar 

  35. 35.

    A. Duran et al., J. Solid State Chem. 183, 1863 (2010)

    ADS  Google Scholar 

  36. 36.

    Xu. Hua, Hu. Xianluo, L. Zhang, Cryst. Growth Des 8, 2061 (2008)

    Google Scholar 

  37. 37.

    N. Sakai, S. Stolen, J. Chem. Thermodyn. 27, 493 (1995)

    Google Scholar 

  38. 38.

    N. Zarrin, S. Husain, W. Khan, S. Manzoor, J. Alloys Compd. 784, 541 (2019)

    Google Scholar 

  39. 39.

    A.A.A. Qahtan et al., J. Alloys Compd. 843, 155637 (2020)

    Google Scholar 

  40. 40.

    W.W. Wendlandt, H.G. Hecht, Reflectance Spectroscopy, vol. 80 (Interscience, New York, 1966).

    Google Scholar 

  41. 41.

    T. Arima, Y. Tokura, J. Torrance, Phys. Rev. B 48, 17006 (1993)

    ADS  Google Scholar 

  42. 42.

    N. Zarrin, S. Husain, D.D. Gaur, A. Somvanshi, M. Fatema, J Mater Sci: Mater Electron 31, 3466 (2020)

    Google Scholar 

  43. 43.

    S.M. Sze, Physics of Semiconductor Devices (Wiley, Hoboken, 1969).

    Google Scholar 

  44. 44.

    M. Enhessari, A. Salehabdi, A. Khoobi, R. Amiri, Mat. Sci. Poland 35, 368 (2017)

    ADS  Google Scholar 

  45. 45.

    A. Nashim, K. Parida, J. Mater. Chem. A 2, 18405 (2014)

    Google Scholar 

  46. 46.

    S. Saha, S. Chanda, A. Dutta, T.P. Sinha, Mater. Res. Bull. 48, 4917 (2013)

    Google Scholar 

  47. 47.

    K.S. Usha, R. Sivakumar, C. Sanjeeviraja, J. Appl. Phys. 114, 123501 (2013)

    ADS  Google Scholar 

  48. 48.

    C.G. Koops, Phys. Rev. 83, 121 (1951)

    ADS  Google Scholar 

  49. 49.

    J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1982).

    MATH  Google Scholar 

  50. 50.

    K.W. Wagner, Ann. Phys. 40, 817 (1913)

    Google Scholar 

  51. 51.

    B.K. Kuanr, G.P. Srivastava, J. Appl. Phys. 75, 6115 (1994)

    ADS  Google Scholar 

  52. 52.

    Zulfiqar, Y. Yuan, Z. Iqbal and J. Lu, Int. J. Mod. Phys. B 31 (2017) 1750234.

  53. 53.

    W. Ncib, A. Ben Jazia Kharrat, M.A. Wederni, N.C. Boudjada, K. Khirouni, W. Boujelben, J. Alloys Comp. 768, 249 (2018)

    Google Scholar 

  54. 54.

    J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, P. Houenou, J. Non-Cryst, Solids 45, 57 (1981)

    Google Scholar 

  55. 55.

    A. Ben Jazia Kharrat, M. Bourouina, N. Moutia, K. Khirouni, W. Boujelben, J. Alloys Comp. 741, 723 (2018)

    Google Scholar 

  56. 56.

    W. Ncib, A. Ben Jazia Kharrat, M.A. Wederni, N. Chniba-Boudjada, K. Khirouni, W. Boujelben, J. Alloys. Comp. 768, 249 (2018)

    Google Scholar 

  57. 57.

    P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    Google Scholar 

  58. 58.

    S. Mathur, A. Krishnamurthy, Ceram. Int. 42, 11459 (2016)

    Google Scholar 

  59. 59.

    S.K. Roy, S. Chaudhari, R.K. Kotnala, D.K. Singh, B.P. Singh, S.N. Singh, K.P. Chandra, K. Prasad, Mater. Sci-Poland 34, 437 (2016)

    ADS  Google Scholar 

  60. 60.

    P.R. Das, B. Pati, B.C. Sutar, R.N.P. Choudhary, J. Mod. Phys. 3, 870 (2012)

    Google Scholar 

  61. 61.

    K. Uchino, S. Nomura, Ferroelectr. Lett. 44, 55 (1982)

    Google Scholar 

  62. 62.

    P. Choudhary, D. Varshney, Solid State Commun. 271, 89 (2018)

    ADS  Google Scholar 

  63. 63.

    R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Smart Mater. Struct. 18, 085014 (2009)

    ADS  Google Scholar 

  64. 64.

    J. Liu, C. Duan, W. Guo Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144106 (2004)

    ADS  Google Scholar 

  65. 65.

    M.A. Valente, M. Peres, C. Nico, T. Monteiro, M.P.F. Graça, A.S.B. Sombra, C.C. Silva, Opti. Mat. 33, 1964 (2011)

    Google Scholar 

  66. 66.

    N.H. Idris, H.B. Senin, A.K. Arof, Ionics 13, 213 (2007)

    Google Scholar 

  67. 67.

    R. Pandit, K.K. Sharma, P. Kaur, R. Kumar, Mater. Chem. Phys. 148, 988 (2014)

    Google Scholar 

  68. 68.

    R. Mguedla, A. Ben Jazia Kharrat, M. Saadi, K. Khirouni, N.C. Boudjada, W. Boujelben, J. Alloys Compd. 812, 152130 (2020)

    Google Scholar 

  69. 69.

    A. Ben Jazia Kharrat, S. Moussa, N. Moutiaa, K. Khirouni, W. Boujelben, J. Alloys Comp. 724, 389 (2017)

    Google Scholar 

  70. 70.

    A.K. Jonscher, Nature 267, 673 (1977)

    ADS  Google Scholar 

  71. 71.

    S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256 (2004)

    Google Scholar 

  72. 72.

    J. Liu, C. Duan, W. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144106 (2004)

    ADS  Google Scholar 

  73. 73.

    K.S. Cole, R.H. Cole, Chem. Phys. B 41, 9 (1941)

    Google Scholar 

  74. 74.

    R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Sci. Rep. 5, 13645 (2015)

    ADS  Google Scholar 

  75. 75.

    Y.B. Taher, N. Moutia, A. Oueslati, M. Gargouri, RSC Adv. 6, 39750 (2016)

    ADS  Google Scholar 

  76. 76.

    S. Halder, K. Parida, S.N. Das, S.K. Pradhan, S. Bhuyan, R.N.P. Choudhary, Phys. Lett. A 382, 716 (2018)

    ADS  Google Scholar 

  77. 77.

    P. Kumar, A.K. Sharma, B.P. Singh, T.P. Sinha, N.K. Singh, Mater. Sci. Appl. 3, 369 (2012)

    Google Scholar 

  78. 78.

    J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, J. Chem. Phys. 119, 2812 (2003)

    ADS  Google Scholar 

  79. 79.

    N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev. B 77, 014111 (2008)

    ADS  Google Scholar 

  80. 80.

    K. Parida, S.K. Dehury, R.N.P. Choudhary, Phys. Lett. A 380, 4083 (2016)

    ADS  Google Scholar 

  81. 81.

    U. Intatha, S. Eitssayeam, J. Wang, T. Tunkasiri, Curr. Appl. Phys. 10, 21 (2010)

    ADS  Google Scholar 

  82. 82.

    S. Sen, R.N.P. Choudhary, P. Pramanik, Phys. B 387, 56 (2007)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shahid Husain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zarrin, N., Husain, S., Somvanshi, A. et al. Modification of magnetic properties, energy band gap and conduction mechanism of lanthanum orthochromite via (Sm, Fe) codoping. Appl. Phys. A 127, 193 (2021). https://doi.org/10.1007/s00339-021-04319-w

Download citation

Keywords

  • Exchange bias
  • Specific heat capacity (c p)
  • Giuntini law
  • Electric modulus
  • Nyquist plots