Structural, magnetic and magnetostrictive properties of the ternary iron–palladium–silicon ferromagnetic shape memory ribbons

Abstract

The influence of the partial substitution of Fe by Si and thermal treatments on the structural, magnetic and magnetostrictive properties of the Fe67.5Pd30.5Si2 rapidly solidified ribbons has been investigated. A remarkable decrease in the martensite transformation temperature, with ~ 65 K lower than that of the Fe–Pd archetype alloy, is observed in the as-prepared ribbons. The thermal treatments shift the martensite transformation temperatures upward, with approximately 13 K for the higher thermal treatment. Also, these induce an improvement in the crystallinity in these ribbons with high texture and an increase in the crystallite size as a result of reducing the internal defects and stress. The thermodynamic considerations discussed in the frame of the Clapeyron–Clausius relation by using the calorimetric and thermomagnetic measurements (up to 7 T) reveal a weak influence of the magnetic fields on the martensitic transformation temperatures (~ 0.5 K/T). The magnetostriction decrease with temperature under small magnetic fields was discussed, beside an unusual behaviour in the technically saturated domain. This behaviour is based on the coexistence of the ordinary and forced magnetostrictions, the last one increasing faster with the temperature decreasing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    R. Oshima, M. Sugiyama, J. Phys. Colloq. 43(C4), 383–389 (1982). https://doi.org/10.1051/jphyscol:1982456

    Article  Google Scholar 

  2. 2.

    Y. Ma, M. Zink, S.G. Mayr, Appl. Phys. Lett. 96, 213703 (2010). https://doi.org/10.1063/1.3435260

    ADS  Article  Google Scholar 

  3. 3.

    K. Ullakko, JMEP 5, 405–409 (1996). https://doi.org/10.1007/BF02649344

    ADS  Article  Google Scholar 

  4. 4.

    E.W. Lee, Rep. Prog. Phys. 18, 184 (1955)

    ADS  Article  Google Scholar 

  5. 5.

    K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, Appl. Phys. Lett. (1996). https://doi.org/10.1063/1.117637

    Article  Google Scholar 

  6. 6.

    T. Yamamoto, M. Taya, Y. Sutou, Y. Liang, T. Wada, L. Sorensen, Acta Mater. 52, 5083–5091 (2004). https://doi.org/10.1016/j.actamat.2004.07.014

    ADS  Article  Google Scholar 

  7. 7.

    J. Cui, T.W. Shield, R.D. Muto, Acta Mater. 52, 35–47 (2004). https://doi.org/10.1016/j.actamat.2003.08.024

    ADS  Article  Google Scholar 

  8. 8.

    R.D. James, M. Wuttig, Philos. Mag. A 77(5), 1273 (1998). https://doi.org/10.1080/01418619808214252

    ADS  Article  Google Scholar 

  9. 9.

    M. Matsui, K. Adachi, Phys. B 161, 53–59 (1989). https://doi.org/10.1016/0921-4526(89)90102-6

    ADS  Article  Google Scholar 

  10. 10.

    S. Muto, R. Oshima, F.E. Fujita, Acta Metall. 38, 685–694 (1990). https://doi.org/10.1016/0956-7151(90)90224-5

    Article  Google Scholar 

  11. 11.

    T. Sakamoto, T. Fukuda, T. Kakeshita, T. Takeuchi, K. Kishio, J. Appl. Phys. 93, 8647–8649 (2003). https://doi.org/10.2320/matertrans.44.2495

    ADS  Article  Google Scholar 

  12. 12.

    T. Kakeshita, T. Fukuda, T. Takeuchi, Mater. Sci. Eng. A 438–440, 12–17 (2006). https://doi.org/10.1016/j.msea.2006.02.193

    Article  Google Scholar 

  13. 13.

    A. Arabi-Hashemi, Y. Ma, A. Setzer, P. Esquinazi, S.G. Mayr, Scripta Mater. 104, 91–94 (2015). https://doi.org/10.1016/j.scriptamat.2015.04.010

    Article  Google Scholar 

  14. 14.

    R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Nature 439, 957 (2006). https://doi.org/10.1038/nature04493

    ADS  Article  Google Scholar 

  15. 15.

    J. Steiner, A. Lisfi, T. Kakeshita, T. Fukuda, M. Wuttig, Sci Rep. 6, 34259 (2016). https://doi.org/10.1038/srep34259

    ADS  Article  Google Scholar 

  16. 16.

    D. Vokoun, T. Goryczkaand, C.T. Hu, Smart Mater. Struct. 12, 242–248 (2003). https://doi.org/10.1088/0964-1726/12/2/312

    ADS  Article  Google Scholar 

  17. 17.

    T. Wada, T. Tagawa, M. Taya, Scr. Mater. 48, 207–211 (2003)

    Article  Google Scholar 

  18. 18.

    K. Tsuchiya, T. Nojiri, H. Ohtsuka, M. Umemoto, Mater. Trans. 44(12), 2499–2502 (2003). https://doi.org/10.2320/matertrans.44.2499

    Article  Google Scholar 

  19. 19.

    V. Sánchez-Alarcos, V. Recarte, J.I. Pérez-Landazábal, M.A. González, J.A. Rodriguez-Velamazan, Acta Mat. 57, 4224–4232 (2009). https://doi.org/10.1016/j.actamat.2009.05.020

    ADS  Article  Google Scholar 

  20. 20.

    M. Sofronie, M. Enculescu, A.D. Crisan, F. Tolea, Rom Rep Phys 72(2), 502 (2020)

    Google Scholar 

  21. 21.

    D. Vokoun, C.T. Hu, Y.H. Lo, A. Lančok, O. Heczko, Mater Today Proc 2S, S845–S848 (2015). https://doi.org/10.1016/j.matpr.2015.07.414

    Article  Google Scholar 

  22. 22.

    M.E. Gruner, S. Hamann, H. Brunken, A. Ludwig, P. Entel, J. Alloys Compd. 577S, S333–S337 (2013). https://doi.org/10.1016/j.jallcom.2012.02.033

    Article  Google Scholar 

  23. 23.

    M. Sofronie, F. Tolea, M. Tolea, B. Popescu, M. Valeanu, J. Phys. Chem. Solids 142, 109446 (2020). https://doi.org/10.1016/j.jpcs.2020.109446

    Article  Google Scholar 

  24. 24.

    S. Hamann, M.E. Gruner, Acta Mater. 58, 5949–5961 (2010). https://doi.org/10.1016/j.actamat.2010.07.011

    ADS  Article  Google Scholar 

  25. 25.

    H.Y. Yasuda, N. Komoto, M. Ueda, Y. Umakoshi, Sci. Technol. Adv. Mater. 3, 165–169 (2002). https://doi.org/10.1016/S1468-6996(02)00012-8

    Article  Google Scholar 

  26. 26.

    O.A. Golovnia, G.A. Popov, N.I. Vlasova, A.V. Protasov, V.S. Gaviko, V.V. Popov Jr., A. Kashyap, J. Magn. Magn. Mater. 481, 212–220 (2019). https://doi.org/10.1016/j.jmmm.2019.03.017

    ADS  Article  Google Scholar 

  27. 27.

    M. He, L. Ma, X. Zhou, T. Liu, L. Li, Q. Yao, Z. Gu, Mater. Res. Express 6, 046406 (2019). https://doi.org/10.1088/2053-1591/aafc04

    ADS  Article  Google Scholar 

  28. 28.

    M. Sofronie, F. Tolea, V. Kuncser, M. Valeanu, G. Filoti, IEEE Trans. Mag. 51, 2500404 (2015). https://doi.org/10.1109/TMAG.2014.235922

    Article  Google Scholar 

  29. 29.

    J. Liu, N. Scheerbaum, D. Hinz, O. Gutfleisch, Acta Mater. 56(13), 3177–3186 (2008). https://doi.org/10.1016/j.actamat.2008.03.008

    ADS  Article  Google Scholar 

  30. 30.

    D. Vokoun, C.T. Hu, J. Alloys Compd. 346, 147–153 (2002). https://doi.org/10.1016/S0925-8388(02)00494-2

    Article  Google Scholar 

  31. 31.

    G. Petculescu, P.K. Lambert, A.E. Clark, K.B. Hathaway, Q. Xing, T.A. Lograsso, J.B. Restorff, M. Wun-Fogle, J. Appl. Phys. 111, 07A921 (2012). https://doi.org/10.1063/1.3673857

    Article  Google Scholar 

  32. 32.

    R. Oshima, M. Suguyama, F.E. Fujita, Metall. Mater. Trans. A 19, 803–810 (1988). https://doi.org/10.1007/BF02628361

    ADS  Article  Google Scholar 

  33. 33.

    K. Seki, H. Kura, T. Sato, T. Taniyama, J. App. Phys. 103, 063910 (2008). https://doi.org/10.1063/1.2890143

    ADS  Article  Google Scholar 

  34. 34.

    P.J. Webster, K.R.A. Ziebeck, S.L. Town, M.S. Peak, Philos Mag B 49, 295 (1984). https://doi.org/10.1080/13642817408246515

    ADS  Article  Google Scholar 

  35. 35.

    V.A. Chernenko, V.A. L’vov, T. Kanomata, T. Kakeshita, K. Koyama, S. Besseghini, Mater. Trans. 47, (2006), 635. https://doi.org/10.2320/matertrans.47.635

  36. 36.

    T. Fukuda, H. Maeda, M. Yasui, T. Kakeshita, Scripta Mater. 60, 261–263 (2009). https://doi.org/10.1016/j.scriptamat.2008.10.016

    Article  Google Scholar 

  37. 37.

    E. du Tre´molet de Lacheisserie. CRC, Boca Raton, (1993)

  38. 38.

    T. Wada, Y. Liang, H. Kato, T. Tagawa, M. Taya, T. Mori, Mater. Sci. Eng. A 361, 75–82 (2003). https://doi.org/10.1016/S0921-5093(03)00444-1

    Article  Google Scholar 

  39. 39.

    V.Z.C. Paes, J. Varalda, D.H. Mosca, J. Magn. Magn. Mater 475, 539–543 (2019). https://doi.org/10.1016/j.jmmm.2018.11.102

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCCDI – UEFISCDI, Project Numbers PN-III-P2-2.1-PED-2019-3453 Contract No. 493/2020 and PN-III-P2-2.1-PED-2019-1276 Contract No. 324/2020 within PNCDI III.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Sofronie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sofronie, M., Popescu, B. & Enculescu, M. Structural, magnetic and magnetostrictive properties of the ternary iron–palladium–silicon ferromagnetic shape memory ribbons. Appl. Phys. A 127, 168 (2021). https://doi.org/10.1007/s00339-021-04315-0

Download citation

Keywords

  • Ferromagnetic shape memory alloys
  • Rapid solidification
  • Martensitic phase transformation
  • Magnetic properties
  • Magnetostriction