Structural, magnetic and magnetostrictive properties of the ternary iron–palladium–silicon ferromagnetic shape memory ribbons


The influence of the partial substitution of Fe by Si and thermal treatments on the structural, magnetic and magnetostrictive properties of the Fe67.5Pd30.5Si2 rapidly solidified ribbons has been investigated. A remarkable decrease in the martensite transformation temperature, with ~ 65 K lower than that of the Fe–Pd archetype alloy, is observed in the as-prepared ribbons. The thermal treatments shift the martensite transformation temperatures upward, with approximately 13 K for the higher thermal treatment. Also, these induce an improvement in the crystallinity in these ribbons with high texture and an increase in the crystallite size as a result of reducing the internal defects and stress. The thermodynamic considerations discussed in the frame of the Clapeyron–Clausius relation by using the calorimetric and thermomagnetic measurements (up to 7 T) reveal a weak influence of the magnetic fields on the martensitic transformation temperatures (~ 0.5 K/T). The magnetostriction decrease with temperature under small magnetic fields was discussed, beside an unusual behaviour in the technically saturated domain. This behaviour is based on the coexistence of the ordinary and forced magnetostrictions, the last one increasing faster with the temperature decreasing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    R. Oshima, M. Sugiyama, J. Phys. Colloq. 43(C4), 383–389 (1982).

    Article  Google Scholar 

  2. 2.

    Y. Ma, M. Zink, S.G. Mayr, Appl. Phys. Lett. 96, 213703 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    K. Ullakko, JMEP 5, 405–409 (1996).

    ADS  Article  Google Scholar 

  4. 4.

    E.W. Lee, Rep. Prog. Phys. 18, 184 (1955)

    ADS  Article  Google Scholar 

  5. 5.

    K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, Appl. Phys. Lett. (1996).

    Article  Google Scholar 

  6. 6.

    T. Yamamoto, M. Taya, Y. Sutou, Y. Liang, T. Wada, L. Sorensen, Acta Mater. 52, 5083–5091 (2004).

    ADS  Article  Google Scholar 

  7. 7.

    J. Cui, T.W. Shield, R.D. Muto, Acta Mater. 52, 35–47 (2004).

    ADS  Article  Google Scholar 

  8. 8.

    R.D. James, M. Wuttig, Philos. Mag. A 77(5), 1273 (1998).

    ADS  Article  Google Scholar 

  9. 9.

    M. Matsui, K. Adachi, Phys. B 161, 53–59 (1989).

    ADS  Article  Google Scholar 

  10. 10.

    S. Muto, R. Oshima, F.E. Fujita, Acta Metall. 38, 685–694 (1990).

    Article  Google Scholar 

  11. 11.

    T. Sakamoto, T. Fukuda, T. Kakeshita, T. Takeuchi, K. Kishio, J. Appl. Phys. 93, 8647–8649 (2003).

    ADS  Article  Google Scholar 

  12. 12.

    T. Kakeshita, T. Fukuda, T. Takeuchi, Mater. Sci. Eng. A 438–440, 12–17 (2006).

    Article  Google Scholar 

  13. 13.

    A. Arabi-Hashemi, Y. Ma, A. Setzer, P. Esquinazi, S.G. Mayr, Scripta Mater. 104, 91–94 (2015).

    Article  Google Scholar 

  14. 14.

    R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Nature 439, 957 (2006).

    ADS  Article  Google Scholar 

  15. 15.

    J. Steiner, A. Lisfi, T. Kakeshita, T. Fukuda, M. Wuttig, Sci Rep. 6, 34259 (2016).

    ADS  Article  Google Scholar 

  16. 16.

    D. Vokoun, T. Goryczkaand, C.T. Hu, Smart Mater. Struct. 12, 242–248 (2003).

    ADS  Article  Google Scholar 

  17. 17.

    T. Wada, T. Tagawa, M. Taya, Scr. Mater. 48, 207–211 (2003)

    Article  Google Scholar 

  18. 18.

    K. Tsuchiya, T. Nojiri, H. Ohtsuka, M. Umemoto, Mater. Trans. 44(12), 2499–2502 (2003).

    Article  Google Scholar 

  19. 19.

    V. Sánchez-Alarcos, V. Recarte, J.I. Pérez-Landazábal, M.A. González, J.A. Rodriguez-Velamazan, Acta Mat. 57, 4224–4232 (2009).

    ADS  Article  Google Scholar 

  20. 20.

    M. Sofronie, M. Enculescu, A.D. Crisan, F. Tolea, Rom Rep Phys 72(2), 502 (2020)

    Google Scholar 

  21. 21.

    D. Vokoun, C.T. Hu, Y.H. Lo, A. Lančok, O. Heczko, Mater Today Proc 2S, S845–S848 (2015).

    Article  Google Scholar 

  22. 22.

    M.E. Gruner, S. Hamann, H. Brunken, A. Ludwig, P. Entel, J. Alloys Compd. 577S, S333–S337 (2013).

    Article  Google Scholar 

  23. 23.

    M. Sofronie, F. Tolea, M. Tolea, B. Popescu, M. Valeanu, J. Phys. Chem. Solids 142, 109446 (2020).

    Article  Google Scholar 

  24. 24.

    S. Hamann, M.E. Gruner, Acta Mater. 58, 5949–5961 (2010).

    ADS  Article  Google Scholar 

  25. 25.

    H.Y. Yasuda, N. Komoto, M. Ueda, Y. Umakoshi, Sci. Technol. Adv. Mater. 3, 165–169 (2002).

    Article  Google Scholar 

  26. 26.

    O.A. Golovnia, G.A. Popov, N.I. Vlasova, A.V. Protasov, V.S. Gaviko, V.V. Popov Jr., A. Kashyap, J. Magn. Magn. Mater. 481, 212–220 (2019).

    ADS  Article  Google Scholar 

  27. 27.

    M. He, L. Ma, X. Zhou, T. Liu, L. Li, Q. Yao, Z. Gu, Mater. Res. Express 6, 046406 (2019).

    ADS  Article  Google Scholar 

  28. 28.

    M. Sofronie, F. Tolea, V. Kuncser, M. Valeanu, G. Filoti, IEEE Trans. Mag. 51, 2500404 (2015).

    Article  Google Scholar 

  29. 29.

    J. Liu, N. Scheerbaum, D. Hinz, O. Gutfleisch, Acta Mater. 56(13), 3177–3186 (2008).

    ADS  Article  Google Scholar 

  30. 30.

    D. Vokoun, C.T. Hu, J. Alloys Compd. 346, 147–153 (2002).

    Article  Google Scholar 

  31. 31.

    G. Petculescu, P.K. Lambert, A.E. Clark, K.B. Hathaway, Q. Xing, T.A. Lograsso, J.B. Restorff, M. Wun-Fogle, J. Appl. Phys. 111, 07A921 (2012).

    Article  Google Scholar 

  32. 32.

    R. Oshima, M. Suguyama, F.E. Fujita, Metall. Mater. Trans. A 19, 803–810 (1988).

    ADS  Article  Google Scholar 

  33. 33.

    K. Seki, H. Kura, T. Sato, T. Taniyama, J. App. Phys. 103, 063910 (2008).

    ADS  Article  Google Scholar 

  34. 34.

    P.J. Webster, K.R.A. Ziebeck, S.L. Town, M.S. Peak, Philos Mag B 49, 295 (1984).

    ADS  Article  Google Scholar 

  35. 35.

    V.A. Chernenko, V.A. L’vov, T. Kanomata, T. Kakeshita, K. Koyama, S. Besseghini, Mater. Trans. 47, (2006), 635.

  36. 36.

    T. Fukuda, H. Maeda, M. Yasui, T. Kakeshita, Scripta Mater. 60, 261–263 (2009).

    Article  Google Scholar 

  37. 37.

    E. du Tre´molet de Lacheisserie. CRC, Boca Raton, (1993)

  38. 38.

    T. Wada, Y. Liang, H. Kato, T. Tagawa, M. Taya, T. Mori, Mater. Sci. Eng. A 361, 75–82 (2003).

    Article  Google Scholar 

  39. 39.

    V.Z.C. Paes, J. Varalda, D.H. Mosca, J. Magn. Magn. Mater 475, 539–543 (2019).

    ADS  Article  Google Scholar 

Download references


This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCCDI – UEFISCDI, Project Numbers PN-III-P2-2.1-PED-2019-3453 Contract No. 493/2020 and PN-III-P2-2.1-PED-2019-1276 Contract No. 324/2020 within PNCDI III.

Author information



Corresponding author

Correspondence to M. Sofronie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sofronie, M., Popescu, B. & Enculescu, M. Structural, magnetic and magnetostrictive properties of the ternary iron–palladium–silicon ferromagnetic shape memory ribbons. Appl. Phys. A 127, 168 (2021).

Download citation


  • Ferromagnetic shape memory alloys
  • Rapid solidification
  • Martensitic phase transformation
  • Magnetic properties
  • Magnetostriction