Skip to main content
Log in

A facile fabrication of Sn-doped CeO2 nanocrystalline thin films with enhanced photodiode properties for optoelectronic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The advancement of pn photodiode fabrication employing rare-earth materials has created cogent interest in the field of semiconductor device technology. We report on the formation of pure and Sn-doped CeO2 thin films assembled through spray pyrolysis technique to enhance the p-Si/n-Sn:CeO2 diode performance. A polycrystalline nature of cubical crystal structured Sn-CeO2 thin films was developed on glass slides with various doping levels of tin (0, 2, 4 and 6 wt%). The crystallite size was found to decline with increasing Sn wt%. A uniform surface with tiny spherical-like crystallite grains was observed through the FE-SEM microscope. The existence of Sn ions with the CeO2 system was confirmed by the EDX and XPS spectrum. The effect of Sn doping on the optical absorption and band gap of CeO2 was evaluated, in which the 2 wt% Sn exhibited lower Eg value with maximum absorption. The Sn ions enhanced the electrical conductivity suggesting the semiconducting nature of the films. The p-Si/n-Sn:CeO2 diode was fabricated, and its performance was analyzed under dark and light intensity of 100 mW/cm2. The photosensitivity of the device varied from 17.11 to 671.65%. The ON–OFF photoresponse of 6 wt% Sn is relatively higher than that of pure CeO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N. Monica Devi, N. Khelchand Singh, Plasmon-induced Ag decorated CeO2 nanorod array for photodetector application. Nanotechnology 31, 225203 (2020)

    Google Scholar 

  2. M.S. Choi, D. Qu, D. Lee, X. Liu, K. Watanabe, T. Taniguchi, W.J. Yoo, Lateral MoS2 p–n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano 8, 9332–9340 (2014)

    Google Scholar 

  3. S.V. Umale, S.N. Tambat, S.M. Sontakke, Combustion synthesized CeO2 as an anodic material in dye sensitized solar cells. Mater. Res. Bull. 94, 483–488 (2017)

    Google Scholar 

  4. D. Das, L. Karmakara, Autogenic single p/n-junction solar cells from black-Si nano-grass structures of p-to-n type self-converted electronic configuration. Nanoscale 12, 15371–15382 (2020)

    Google Scholar 

  5. V. Piazza, M. Vettori, A. Ali Ahmed, P. Lavenus, F. Bayle, N. Chauvin, F.H. Julien, P. Regreny, G. Patriarche, A. Fave, M. Gendry, M. Tchernycheva, Nanoscale investigation of a radial p–n junction in self-catalyzed GaAs nanowires grown on Si(111). Nanoscale 10, 20207–20217 (2018)

    Google Scholar 

  6. W. Tian, H. Sun, L. Chen, P. Wangyang, X. Chen, J. Xiong, L. Li, Low-dimensional nanomaterial/Si heterostructure-based photodetectors. Info Mat. 1, 140–163 (2019)

    Google Scholar 

  7. S. Hemour, K. Wu, Radio-frequency rectifier for electromagnetic energy harvesting: development path and future outlook. Proc. IEEE 102, 1667–1692 (2014)

    Google Scholar 

  8. Y. Gurbuz, O. Esame, I. Tekin, W. Kang, J.L. Davidson, Diamond semiconductor technology for RF device applications. Solid-State Electron. 49, 1055–1070 (2005)

    ADS  Google Scholar 

  9. M. Balaji, J. Chandrasekaran, M. Raja, Role of substrate temperature on MoO3 thin films by the JNS pyrolysis technique for P-N junction diode application. Mater. Sci. Semicond. Process. 43, 104–113 (2016)

    Google Scholar 

  10. Q. Zhang, M. Xu, Z. Shen, Q. Wei, A nanostructured Cr2O3/WO3 p–n junction sensor for highly sensitive detection of butanone. J. Mater. Sci. Mater. Electron. 28, 12056–12062 (2017)

    Google Scholar 

  11. R. Suresh, V. Ponnuswamy, C. Sankar, M. Manickam, R. Mariappan, IDC golf-ball structured thin films: preparation, characterization and photodiode properties. RSC Adv. 6, 53967–53980 (2016)

    ADS  Google Scholar 

  12. C.A. Lopez-Lazcano, G.G. Martínez-Falomir, J.L. Almaral-Sánchez, Deposition of ZnO and Gd2O3 by co-sputtering to enable ZnO-Gd2O3 based PIN junction diodes. Mater. Sci. Semiconductor Process. 111, 105005 (2020)

    Google Scholar 

  13. R. Suresh, V. Ponnuswamy, R. Mariappan, Incorporation of Al3+ on the rectification properties of ADC thin films. Ceram. Int. 41, 3081–3093 (2015)

    Google Scholar 

  14. S. Zinzuvadiya, N.C. Pandya, U.S. Joshi, Optoelectronic response of (111) oriented CeO2 films for UV photodetector. Thin Solid Films 669, 525–530 (2019)

    ADS  Google Scholar 

  15. Y. Luo, T. Yang, Q. Zhao, M. Zhang, CeO2/CNTs hybrid with high performance as electrode materials for supercapacitor. J. Alloys Compounds 729, 64–70 (2017)

    Google Scholar 

  16. R. Murugan, G. Vijayaprasath, T. Mahalingam, G. Ravi, Defect induced magnetic transition in Co doped CeO2 sputtered thin films. Ceram. Int. 42, 11724–11731 (2016)

    Google Scholar 

  17. P. Li, W. Zhang, X. Zhang, Z. Wang, X. Wang, S. Ran, Y. Lv, Synthesis, characterization, and photocatalytic properties of flower-like Mn-doped ceria. Mater. Res. 21, e20180167 (2018)

    Google Scholar 

  18. B. Arndt, H. Noei, T.F. Keller, P. M¨uller, V. Vonk, A. Nenning, A.K. Opitz, J. Fleig, U. R¨utt, A. Stierle, , Structure and stability of Gd-doped CeO2 thin films on Yttria-Stabilized zirconia. Thin Solid Films 603, 56–61 (2016)

    ADS  Google Scholar 

  19. R. Niruban Bharathi, S. Sankar, Structural, optical and magnetic properties of Pr doped CeO2 nanoparticles synthesized by citrate–nitrate auto combustion method. J. Mater. Sci. Mater. Electron. 29, 6679–6691 (2018)

    Google Scholar 

  20. P. Arunkumar, R. Ramaseshan, S. Dash, T.R. Joysury Basu, S. Ravindran, K.S. Balakumar, Babu, , Texturing of pure and doped CeO2 thin films by EBPVD through target engineering. RSC Adv. 4, 33338 (2014)

    ADS  Google Scholar 

  21. R. Siva prakash, C. Mahendran, J. Chandrasekaran, R. Marnadu, S. Maruthamuth (2020) Impact of substrate temperature on the properties of rare-earth cerium oxide thin films and electrical performance of p-Si/n-CeO2 junction diode, J Inorg. Organomet. Polym. https://doi.org/10.1007/s10904-020-01667-7

  22. R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, P. Vivek, E. Vijayakumar, Superior photoresponse MIS Schottky barrier diodes with nanoporous:Sn-WO3 films for ultraviolet photodetector application. New J. Chem. 44, 7708–7718 (2020)

    Google Scholar 

  23. S. Phok, R.N. Bhattacharya, Effect of samarium doping on electrodeposited CeO2 thin film. Physica Status Solidi (a) 203, 3734–3742 (2006)

    ADS  Google Scholar 

  24. A. Pfau, K.D. Schierbaum, The electronic structure of stoichiometric and reduced CeO2, surfaces: an XPS UPS and HREELS study. Surf. Sci. 321, 71–80 (1994)

    ADS  Google Scholar 

  25. Rafael A. C. Amoresi, Regiane Cristina de Oliveira, Naiara L Marana, Priscila Barros de Almeida, Paloma Santana Prata, Maria Aparecida Zaghete, Elson Longo, Julio Ricardo Sambrano, and Alexandre Z. Simoes (2019) CeO2 Nanoparticle Morphologies and their Corresponding Crystalline Planes for the Photocatalytic Degradation of Organic Pollutants, ACS Appl. Nano Mater. https://doi.org/10.1021/acsanm.9b01452

  26. Regiane Cristina de Oliveira, Rafael aparecido ciola amoresi, naiara leticia marana, maria aparecida zaghete, miguel ponce, adenilson jose chiquito, julio ricardo sambrano, elson longo, and alexandre zirpoli simões, influence of synthesis time on the morphology and properties of ceo2 nanoparticles: an experimental-theoretical study. Cryst. Growth Des. (2020). https://doi.org/10.1021/acs.cgd.0c00165

    Article  Google Scholar 

  27. B. Andrea Cavallaro, F. Sandiumenge, J. Gàzquez, T. Puig, X. Obradors, J. Arbiol, H.C. Freyhardt, Growth mechanism, microstructure, and surface modification of nanostructured CeO2 films by chemical solution deposition. Adv. Funct. Mater. 16, 1363–1372s (2006)

    Google Scholar 

  28. F. Zhang, E. Mohammadi, X. Luo, J. Strzalka, J. Mei, Y. Diao, Critical role of surface energy in guiding crystallization of solution-coated conjugated polymer thin. Langmuir 34, 1109–1122 (2017)

    Google Scholar 

  29. K. Sureshkumar, N. Victor jaya, , Synthesis and characterization of pure and Sn-doped CeO2 nanoparticles. Asian J. Chem. 25, 6095–6098 (2013)

    Google Scholar 

  30. M. Shkir, S. AlFaify, Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Repor 7, 16091 (2017)

    ADS  Google Scholar 

  31. Mohd. Shkir Kamlesh V. Chandekar, AslamKhan, Ahmed Mohamed El-, ToniI.M. Ashraf, M. Benghanem, Syed FarooqAdil, Anees A. Ansari, HamidGhaithan, , Structural, morphological, vibrational, optical, and nonlinear characteristics of spray pyrolyzed CdS thin films: effect of Gd doping content. Mater. Chem. Phys. 255, 123615 (2020)

    Google Scholar 

  32. B.P. Dias, N.F. Andrade Neto, L.M.P. Garcia, M.R.D. Bomio, F.V. Motta, Study of obtaining thin films of CeO2 doped with 2 and 4 mol% of europium, terbium and thulium by spin coating:photocatalytic properties. Cerâmica 65, 515–522 (2019)

    Google Scholar 

  33. M. Santamaria, L. Asaro, P. Bocchetta, B. Megna, F. Di Quartoa, Anodic electro deposition of CeO2 and Co-doped CeO2 thin films. J. Electrochem. Soc. 160, D212–D217 (2013)

    Google Scholar 

  34. W.E. Mahmoud, A.A. Al-Ghamdi, F.A. Al-Agel, E. Al-Arfaj, F.S. Shokr, S.A. Al-Gahtany, M. Ahmed Alshahrie, L.M.B. Hafez, G.W. Beall, Structure and properties of the Mn doped CeO2 thin film grown on LaAlO3 (001) via a modified sol–gel spin-coating technique. J. Alloys Compounds 640, 122–127 (2015)

    Google Scholar 

  35. J. Manuel López, A.L. Gilbank, T. García, B. Solsona, S. Agouramd, L. Torrente-Murciano, The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Appl. Catal. B Environ. 174–175, 403–412 (2015)

    Google Scholar 

  36. E. Bˆeche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, , Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interf. Anal. 40, 264–267 (2008)

    Google Scholar 

  37. L. Truffault, M. Magnani, P. Hammer, C.V. Santilli, S.H. Pulcinelli, Structural and optical features of ureasiloxane polyethylene oxide hybrids containing CeO2 nanoparticles. Coll. Surf. A 471, 73–80 (2015)

    Google Scholar 

  38. C. Ma, Y. Wen, Q. Yue, A. Li, J. Fu, N. Zhang, H. Gai, J. Zheng, B.H. Chen, Oxygen-vacancy-promoted catalytic wet air oxidation of phenol from MnOx–CeO2. RSC Adv. 7, 27079–27088 (2017)

    ADS  Google Scholar 

  39. G.B. Della Mea, L.P. Matte, A.S. Thill, F.O. Lobato, E.V. Benvenutti, L.T. Arenas, A. J ¨urgensen, R. Hergenr¨oder, F. S. Poletto, F. Bernardi, , Tuning the oxygen vacancy population of cerium oxide (CeO2−x, 0<x<0.5) nanoparticles. Appl. Surf. Sci. 422, 1102–1112 (2017)

    ADS  Google Scholar 

  40. H. Jadhav, S. Suryawanshi, M.A. More, S. Sinha, Pulsed laser deposition of tin oxide thin films for field emission studies. Appl. Surf. Sci. 419, 764–769 (2017)

    ADS  Google Scholar 

  41. C.H.S.S. Pavan Kumar, R. Pandeeswari, B.G. Jeyaprakash, Structural, morphological and optical properties of spray deposited Mn-doped CeO2 thin films. J. Alloys Compounds 602, 180–186 (2014)

    Google Scholar 

  42. D.C. Reynolds, D.C. Look, B. Jogai, Combined effects of screening and band gap renormalization on the energy of optical transitions in ZnO and GaN. J. Appl. Phys. 88, 5760 (2000)

    ADS  Google Scholar 

  43. R. Chauhan, A.K. Srivastava, K.K. Madhu Mishra, Srivastava, , Effect of UV exposure on some optical properties of As-Se based chalcogenide glasses. Integr. Ferroelectrics Int. J. 119, 22–32 (2010)

    Google Scholar 

  44. R. Mukherjee, P.P. Sahay, Structural, morphological, optical and electrical properties of spray-deposited Sb-doped WO3 nanocrystalline thin films prepared using ammonium tungstate precursor. J. Mater. Sci Mater Electron (2015). https://doi.org/10.1007/s10854-015-2745-5

    Article  Google Scholar 

  45. A.J. Al-Douri, F.Y. Al-Shakily, A.A. Alnajjar, M.F.A. Alias, The role of dopant concentration on conductivity and mobility of CdTe thin films. Adv. Condens. Matter Phys. (2011). https://doi.org/10.1155/2011/910967

    Article  Google Scholar 

  46. A. Buyukbas-Ulusan, S. Altındal-Yerişkin, A. Tataroğlu, Forward and reverse bias current–voltage (I–V) characteristics in the metal–ferroelectric–semiconductor (Au/SrTiO3/n-Si) structures at room temperature. J. Mater. Sci.: Mater. Electron. 29, 16740–16746 (2018)

    Google Scholar 

  47. A.B. Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, Ş Altındal, On the conduction mechanisms of Au/(Cu2O–CuO–PVA)/n-Si (MPS) Schottky barrier diodes (SBDs) using current–voltage–temperature (I–V–T) characteristics. J. Mater. Sci.: Mater. Electron. 29, 159–170 (2018)

    Google Scholar 

  48. A. Tataroğlu, Ş Altındal, The analysis of the series resistance and interface states of MIS Schottky diodes at high temperatures using I-V characteristics. J. Alloy. Compd. 484, 405–409 (2009)

    Google Scholar 

  49. A. Bengi, S. Altındal, S.O¨ zçelik, S.T. Agaliyeva, T.S. Mammadov, , Analysis of temperature dependent electrical characteristics of Au/n-GaAs/GaAs structures in a wide temperature range. Vacuum 83, 276–281 (2009)

    ADS  Google Scholar 

  50. O. Pakma, N. Serin, T. Serin, S¸. Altındal, , The effects of preparation temperature on the main electrical parameters of Al/TiO2/p-Si (MIS) structures by using sol–gel method. J. Sol-Gel Sci. Technol. 50, 28–34 (2009)

    Google Scholar 

  51. A. Tataroglu, S. Altındal, The distribution of barrier heights in MIS type Schottky diodes from current–voltage–temperature (I–V–T) measurements. J. Alloy. Compd. 479, 893–897 (2009)

    Google Scholar 

  52. O. Pakma, N. Serin, T. Serin, Ş Altındal, The double Gaussian distribution of barrier heights in Al/TiO2/p-Si (metalinsulator-semiconductor) structures at low temperatures. J. Appl. Phys. 104, 014501 (2008)

    ADS  Google Scholar 

  53. M. Ozer, D.E. Yıldız, S. Altındal, M.M. Bulbu, Temperature dependence of characteristic parameters of the Au/SnO2/n-Si (MIS) Schottky diodes. Solid-State Electron. 51, 941–949 (2007)

    ADS  Google Scholar 

  54. S.A. Yerişkin, M. Balbaşı, İ. Orak, The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature. J. Mater. Sci.: Mater. Electron (2017). https://doi.org/10.1007/s10854-017-7255-1

    Article  Google Scholar 

  55. R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, V. Balasubramani, P. Vivek, R. Suresh, Ultra-high photoresponse with superiorly sensitive metal-insulator-semiconductor (MIS) structured diodes for UV photodetector application. Appl. Surf. Sci. 480, 308–322 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Department of Science and Technology-Science and Engineering Research Board, Government of India, for the major research project (EMR/2016/007874). The authors from KKU express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P.2/64/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chandrasekaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siva Prakash, R., Mahendran, C., Chandrasekaran, J. et al. A facile fabrication of Sn-doped CeO2 nanocrystalline thin films with enhanced photodiode properties for optoelectronic applications. Appl. Phys. A 127, 173 (2021). https://doi.org/10.1007/s00339-021-04311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04311-4

Keywords

Navigation