The most optimal barrier height of InGaN light-emitting diodes


In this paper, a novel structure is presented in order to decrease the polarization charges of quantum wells. The main purpose of this design is to make electron and hole wavefunctions closer to each other and to increase overlap integral following an increase of radiative recombination rates and internal quantum efficiency. Furthermore, carriers will be increased and become more balanced and identical which leads to an increase in efficiency of light-emitting diodes. The improvement of radiative recombination rates is studied in new structures. Energy bands diagram, carriers density, current density–voltage, and power density–current density are used to demonstrate the superior performance of the proposed structures and to find the optimal point. The carriers density diagrams for conventional and new structures reveal an increment in carriers injection in new structures. The radiative recombination rates diagram of the proposed structures also indicates that all potential wells participate in light emission.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    O. Krüger, J.-H. Kang, M. Spevak, U. Zeimer, S. Einfeldt, Precision UV laser scribing for cleaving mirror facets of GaN-based laser diodes. Applied Physics A 122, 396 (2016)

    Article  Google Scholar 

  2. 2.

    A. Hurtado, H. Xu, J.B. Wright, S. Liu, Q. Li, G.T. Wang, I. Brener, Polarization switching in GaN nanowire lasers. Applied Physics Letters 103(25), 251107 (2013)

    ADS  Article  Google Scholar 

  3. 3.

    L. Liu, L. Wang, C. Lu, D. Li, N. Liu, L. Li, W. Yang, W. Cao, W. Chen, W. Du, X. Hu, Enhancement of light-emission efficiency of ultraviolet InGaN/GaN multiple quantum well light emitting diode with InGaN underlying layer. Appl. Phys A 108, 771–776 (2012)

    ADS  Article  Google Scholar 

  4. 4.

    M.K. Öztürk, S. Çörekçi, M. Tamer, S.Ş Çetin, S. Özçelik, E. Özbay, Microstructural properties of InGaN/GaN light-emitting diode structures with different In content grown by MOCVD. Appl. Phys. A 114, 1215–1221 (2014)

    ADS  Article  Google Scholar 

  5. 5.

    L. Zhang, C.H. Teng, P.C. Ku, H. Deng, Site-controlled InGaN/GaN single-photon-emitting diode. Appl. Phys. Lett. 108(15), 153102 (2016)

    ADS  Article  Google Scholar 

  6. 6.

    Z.H. Zhang, S. Tiam Tan, Z. Kyaw, Y. Ji, W. Liu, Z. Ju, N. Hasanov, X. Wei Sun, H. Volkan Demir, InGaN/GaN light-emitting diode with a polarization tunnel junction. Appl. Phys. Lett. 102(19), 193508 (2013)

    ADS  Article  Google Scholar 

  7. 7.

    J. Bai, C.C. Yang, M. Athanasiou, T. Wang, Efficiency enhancement of InGaN/GaN solar cells with nanostructures. Appl. Phys. Lett. 104, 051129 (2014)

    ADS  Article  Google Scholar 

  8. 8.

    S.T. Tan, X.W. Sun, H.V. Demir, S.P. DenBaars, Advances in the LED materials and architectures for energy-saving solid-state lighting toward lighting revolution. IEEE Photon. J. 4(2), 613–619 (2012)

    ADS  Article  Google Scholar 

  9. 9.

    L.-H. Zhu, W. Liu, F.-M. Zeng, Y.-L. Gao, B.-L. Liu, Y.-J. Lu, Z. Chen, Efficiency droop improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum wells. IEEE Photon. J. 5, 8200208–8200208 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    I.E. Titkov, D.A. Sannikov, Y.M. Park, J.K. Son, Blue light emitting diode internal and injection efficiency. AIP Adv. 2(3), 032117 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    H. Zhao, G. Liu, R.A. Arif, N. Tansu, Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes. Solid-State Electr. 54(10), 1119–1124 (2010)

    ADS  Article  Google Scholar 

  12. 12.

    K.J. Vampola, M. Iza, S. Keller, S.P. DenBaars, S. Nakamura, Measurement of electron overflow in 450 nm InGaN light-emitting diode structures. Appl. Phys. Lett. 94(6), 061116 (2009)

    ADS  Article  Google Scholar 

  13. 13.

    H.P.T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G.A. Botton, Z. Mi, Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes. Nano Lett. 12(3), 1317–1323 (2012)

    ADS  Article  Google Scholar 

  14. 14.

    K. Ding, Y.P. Zeng, X.C. Wei, Z.C. Li, J.X. Wang, H.X. Lu, P.P. Cong, X.Y. Yi, G.H. Wang, J.M. Li, A wide-narrow well design for understanding the efficiency droop in InGaN/GaN light-emitting diodes. Appl. Phy. B 97(2), 465 (2009)

    ADS  Article  Google Scholar 

  15. 15.

    C.H. Wang, C.C. Ke, C.Y. Lee, S.P. Chang, W.T. Chang, J.C. Li, Z.Y. Li, H.C. Yang, H.C. Kuo, T.C. Lu et al., Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer. Appl. Phys. Lett. 97, 261103 (2010)

    ADS  Article  Google Scholar 

  16. 16.

    A. David, M.J. Grundmann, Droop in InGaN light-emitting diodes: a differential carrier lifetime analysis. Appl. Phys. Lett. 96, 103504 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames, Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91, 141101 (2007)

    ADS  Article  Google Scholar 

  18. 18.

    M.-H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91, 183507 (2007)

    ADS  Article  Google Scholar 

  19. 19.

    M.F. Schubert, J. Xu, J.K. Kim, E.F. Schubert, M.H. Kim, S. Yoon, S.M. Lee, C. Sone, T. Sakong, Y. Park, Polarization-matched Ga In N/ Al Ga In N multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl. Phys. Lett. 93, 041102 (2008)

    ADS  Article  Google Scholar 

  20. 20.

    S. Nakamura, T. Mukai, M. Senoh, Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994)

    ADS  Article  Google Scholar 

  21. 21.

    G. Liu, J. Zhang, C.-K. Tan, N. Tansu, Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes. IEEE Photon. J. 5, 2201011–2201011 (2013)

    ADS  Article  Google Scholar 

  22. 22.

    V. Devi, R. Kumar, B.C. Joshi, Droop improvement in InGaN/GaN light-emitting diodes by polarization doping of quantum wells and electron blocking layer. J. Disp. Technol. 11, 30–35 (2015)

    ADS  Article  Google Scholar 

  23. 23.

    H. Zhao, G. Liu, J. Zhang, J.D. Poplawsky, V. Dierolf, N. Tansu, Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Opt. Express 19, A991–A1007 (2011)

    ADS  Article  Google Scholar 

  24. 24.

    J. Zhang, N. Tansu, Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes. J. Appl. Phys. 110, 113110 (2011)

    ADS  Article  Google Scholar 

  25. 25.

    H.P. Zhao, G.Y. Liu, X.-H. Li, R.A. Arif, G.S. Huang, J.D. Poplawsky, S. Penn, D.V. Tafon, N. Tansu, Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime. IET Optoelectr. 3, 283–295 (2009)

    Article  Google Scholar 

  26. 26.

    P.M. McBride, Q. Yan, C.G. Van de Walle, Effects of In profile on simulations of InGaN/GaN multi-quantum-well light-emitting diodes. Appl. Phys. Lett. 105, 083507 (2014)

    ADS  Article  Google Scholar 

  27. 27.

    A. Salhi, M. Alanzi, B. Alonazi, Effect of the quantum-well shape on the performance of InGaN-based light-emitting diodes emitting in the 400–500-nm range. J. Disp. Technol. 11, 217–222 (2015)

    ADS  Article  Google Scholar 

  28. 28.

    T.K. Sharma, E. Towe, On ternary nitride substrates for visible semiconductor light-emitters. Appl. Phys. Lett. 96, 191105 (2010)

    ADS  Article  Google Scholar 

  29. 29.

    V. Fiorentini, F. Bernardini, O. Ambacher, Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl. Phys. Lett. 80, 1204–1206 (2002)

    ADS  Article  Google Scholar 

  30. 30.

    F. Bernardini, V. Fiorentini, Nonlinear macroscopic polarization in III-V nitride alloys. Phys. Rev. B 64, 085207 (2001)

    ADS  Article  Google Scholar 

  31. 31.

    I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675–3696 (2003)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohammad Hossein Alam Varzaneh Isfahani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alam Varzaneh Isfahani, M., Faez, R. The most optimal barrier height of InGaN light-emitting diodes. Appl. Phys. A 127, 144 (2021).

Download citation


  • Polarization charges
  • Light-emitting diodes
  • Overlap integral
  • Radiative recombination rates