BaZrO3 dopant interactions during MgB2 wire formation by modified internal magnesium diffusion process

Abstract

Undoped and BaZrO3 nanopowder-doped MgB2/Nb/Cu single filament wires were prepared by modified internal magnesium diffusion (IMD) process using 0, 2 and 5 wt% BaZrO3 addition in amorphous B powder. Superconducting MgB2 phase was formed during heat treatment at temperatures from 650 to 670 °C. The wire microstructure was analysed using XRD, SEM, TEM and EDS to study BaZrO3 dopant interaction with Mg and B precursors during the heat treatment and effect of dopant on MgB2 superconductor. The BaZrO3 nanopowder decomposed and its products reacted with Mg and B producing relatively large BaB6 grains and nanograins of ZrB2 and MgO phases which were not detected by conventional XRD measurements due to their low grain size. Measured MgB2 lattice parameters varied with the dopant addition and heat treatment temperature. Different possible origins of MgB2 lattice deformation were discussed, and it was shown that Zr substitution in MgB2 lattice could not cause this deformation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

taken from a nanograin conglomerate part; the markers correspond to positions of diffraction rings of phases according to powder diffraction database PDF2

Fig. 5
Fig. 6
Fig. 7

Code availability

Not applicable.

References

  1. 1.

    I. Marino, A. Pujana, G. Sarmiento, S. Sanz, J.M. Merino, M. Tropeano, J. Sun, T. Canosa, Lightweight MgB2 superconducting 10 MW wind generator. Supercond. Sci. Technol. 29, 024005 (2016)

    ADS  Article  Google Scholar 

  2. 2.

    D. Patel et al., Evaluation of a solid nitrogen impregnated MgB2 racetrack coil. Supercond. Sci. Technol. 31, 105010 (2018)

    ADS  Article  Google Scholar 

  3. 3.

    A. Ballarino, R. Flükiger, Status of MgB2 wire and cable applications in Europe. J. Phys. Conf. Ser. 871, 012098 (2017)

    Article  Google Scholar 

  4. 4.

    D. Wang, Y. Ma, Ch. Yao, D. Xu, X. Zhang, S. Awaji, Transport properties of multifilament MgB2 long wires and coils prepared by internal Mg diffusion process. Supercond. Sci. Technol. 30, 064003 (2017)

    ADS  Article  Google Scholar 

  5. 5.

    P. Kováč, L. Kopera, M. Hain, E. Martinez, J. Kováč, T. Melišek, D. Berek, I. Hušek, MgB2 cables made of thin wires manufactured by IMD process. Supercond. Sci. Technol. 33, 085004 (2020)

    ADS  Article  Google Scholar 

  6. 6.

    L. Kopera, P. Kováč, J. Kováč, T. Melišek, I. Hušek, D. Berek, Small diameter wind and react coil made of anodised Al-sheathed MgB2 wire. Supercond. Sci. Technol. 32, 105003 (2019)

    ADS  Article  Google Scholar 

  7. 7.

    D.Y. Wang, X.F. Pan, D. Xi, Q.Y. Wang, J.Q. Feng, G. Yan, Y. Zhao, Development and superconducting properties of practical 18- and 30-Filamentary MgB2 long wires with twisting by the in situ way. J. Spercond. Nov. Magn. 33, 2657 (2020)

    Article  Google Scholar 

  8. 8.

    S. Sanz, T. Arlaban, R. Manzanas, M. Tropeano, R. Funke, P. Kováč, Y. Yang, H. Newmann, B. Mondsert, Superconducting light generator for large offshore wind turbines. J. Phys. Conf. Ser. 507, 032040 (2014)

  9. 9.

    M. Avdeev, J.D. Jorgensen, R.A. Ribeiro, S.L. Budko, P.C. Canfield, Crystal chemistry of carbon-substituted MgB2. Physica C 387, 301 (2003)

    ADS  Article  Google Scholar 

  10. 10.

    S. Lee, T. Masui, A. Yamamoto, H. Uchiyama, S. Tajima, Crystal growth of C-doped MgB2 superconductors: accidental doping and inhomogeneity. Physica C 412–414, 31 (2004)

    ADS  Article  Google Scholar 

  11. 11.

    A. Wisniewski, R. Puzniak, J. Judek, C. Krutzler, M. Eisterer, H.W. Weber, J. Jun, S.M. Kazakov, J. Karpinski, Comparison of the influence of carbon substitution and neutron-induced defects on the upper critical field and flux pinning in MgB2 single crystals. Supercond. Sci. Technol. 20, 256 (2007)

    ADS  Article  Google Scholar 

  12. 12.

    K.S.B. De Silva, X. Xu, X.L. Wang, D. Wexler, D. Attard, F. Xiang, S.X. Dou, A significant improvement in the superconducting properties of MgB2 by co-doping with graphene and nano-SiC. Scripta Mater. 67, 802 (2012)

    Article  Google Scholar 

  13. 13.

    A.G. Bhagurkar, A. Yamamoto, L. Wang, M. Xia, A.R. Dennis, J.H. Durrell, T.A. Aljohani, N.H. Babu, D.A. Cardwell, High trapped fields in C-doped MgB2 bulk superconductors fabricated by infiltration and growth process. Sci. Rep. 8, 13320 (2018)

    ADS  Article  Google Scholar 

  14. 14.

    J. Karpinski, Synthesis, substitutions and properties of MgB2 single crystals, in MgB2 superconducting wires, ed.by R. Flükiger (World Scientific Publishing, 2016), p. 33

  15. 15.

    J.Y. Xiang, D.N. Zheng, J.Q. Li, S.L. Li, H.H. Wen, Z.X. Zhao, Effect of Al doping on the superconducting and structural properties of MgB2. Physica C 386, 611 (2003)

    ADS  Article  Google Scholar 

  16. 16.

    A.J. Zambano, A.R. Moodenbaugh, L.D. Cooley, Effects of different reactions on composition homogeneity and superconducting properties of Al-doped MgB2. Supercond. Sci. Technol. 18, 1411 (2005)

    ADS  Article  Google Scholar 

  17. 17.

    H.L. Xu et al., Investigation on MgB2 superconductor doped by nano-Al powder. Physica C 449, 53 (2006)

    ADS  Article  Google Scholar 

  18. 18.

    Y.G. Zhao et al., Effect of Li doping on structure and superconducting transition temperature of Mg1-xLixB2. Physica C 361, 91 (2001)

    ADS  Article  Google Scholar 

  19. 19.

    S.M. Kazakov, M. Angst, J. Karpinski, I.M. Fita, R. Puzniak, Substitution effect of Zn and Cu in MgB2 on Tc and structure. Solid State Commun. 119, 1 (2001)

    ADS  Article  Google Scholar 

  20. 20.

    R.J. Cava, H.W. Zandbergen, K. Inumaru, The substitutional chemistry of MgB2. Physica C 385, 8 (2003)

    ADS  Article  Google Scholar 

  21. 21.

    C.H. Cheng et al., Chemical doping effect on the crystal structure and superconductivity of MgB2, Physica C 386, 588 (2003)

    ADS  Article  Google Scholar 

  22. 22.

    J.-C. Grivel, Influence of iridium doping in MgB2 superconducting wires. Physica C 547, 7 (2018)

    ADS  Article  Google Scholar 

  23. 23.

    Y. Feng, Y. Zhao, Y.P. Sun, F.C. Liu, B.Q. Fu, L. Zhou, C.H. Cheng. N. Koshizuka, M. Murakami, Improvement of critical current density in MgB2 superconductors by Zr doping at ambient pressure. Appl. Phys. Lett. 79, 3983 (2001)

  24. 24.

    M. Bhatia, M.D. Sumption, E.W. Collings, S. Dregia, Increases in the irreversibility field and the upper critical field of bulk MgB2 by ZrB2 addition. Appl. Phys. Lett. 87, 042505 (2005)

    ADS  Article  Google Scholar 

  25. 25.

    M.A. Susner, M.D. Sumption, A. Takase, E.W. Collings, Evidence for Zr site-substitution for Mg in PLD-deposited MgB2 thin films, Supercond. Sci. Technol. 27, 075009 (2014)

    ADS  Article  Google Scholar 

  26. 26.

    B. Brunner, P. Kováč, A. Rosová, M. Reissner, E. Dobročka, Properties of MgB2 wires doped with BaZrO3 nanopowder made by a modified internal magnesium diffusion process. Supercond. Sci. Technol. 30, 115003 (2017)

    ADS  Google Scholar 

  27. 27.

    T. Horide, T. Kitamura, A. Ichinose, K. Matsumoto, Elastic strain evolution in nonocomposite structure of YBa2Cu3O7 + BaZrO3 superconducting films. Jpn. J. Appl. Phys. 53, 083101 (2014)

    Article  Google Scholar 

  28. 28.

    J. Lee et al., High critical current density over 1 MAcm-2 at 13 T in BaZrO3 incorporated Ba(Fe,Co)2As2 thin film. Supercond. Sci. Technol. 30, 085006 (2017)

    ADS  Article  Google Scholar 

  29. 29.

    Sh. Chen et al., Generating mixed morphology BaZrO3 artificial pinning centers for strong and isotropic pinning in BaZrO3-Y2O3 double-doped YBCO thin films. Supercond. Sci. Technol. 30, 125011 (2017)

    ADS  Article  Google Scholar 

  30. 30.

    P. Kováč, I. Hušek, A. Rosová, M. Kulich, J. Kováč, T. Melišek, L. Kopera, M. Balog, P. Krížik, Ultra-lightweight superconducting wire based on Mg, B, Ti and Al. Sci. Rep. 8, 11229 (2018)

    ADS  Article  Google Scholar 

  31. 31.

    A. Rosová, I. Hušek, M. Kulich,.T. Melišek, P. Kováč, E. Dobročka, L. Kopera, J. Scheiter, W. Häβler, Microstructure of undoped and C-doped MgB2 wiresprepared by an internal magnesium diffusion technique using different B powders. J. Alloys Comp. 764, 437 (2018)

  32. 32.

    A. Rosová, M. Kulich, P. Kováč, B. Brunner, J. Scheiter, W. Häßler, The effect of boron powder on the microstructure of MgB2 filaments prepared by the modified internal magnesium technique. Supercond. Sci. Technol. 30, 055001 (2017)

    ADS  Article  Google Scholar 

  33. 33.

    A. Rosová, I. Hušek, P. Kováč, E. Dobročka, T. Melišek, Microstructure of MgB2 superconducting wire prepared by internal magnesium diffusion process. J. Alloys Comp. 619, 726 (2015)

    Article  Google Scholar 

  34. 34.

    G. Giunchi, C. Orecchia, L. Malpezzi, N. Masciochci, Analysis of the minority crystalline phases in bulk superconducting MgB2 obtained by reactive liquid Mg infiltration. Physica C 433, 182 (2006)

    ADS  Article  Google Scholar 

  35. 35.

    J.L. Lábár, Electron diffraction based analysis of phase fractions and texture in nanocrystalline thin films, Part I. Microsc. Microanal. 14, 287 (2008)

    ADS  Article  Google Scholar 

  36. 36.

    J.L. Lábár, Electron diffraction based analysis of phase fractions and texture in nanocrystalline thin films, Part II. Microsc. Microanal. 15, 20 (2009)

    ADS  Article  Google Scholar 

  37. 37.

    A. Rosová, P. Kováč, I. Hušek, B. Brunner, E. Dobročka, Microstructure of MgB2 superconducting wire prepared by internal magnesium diffusion and in-situ powder-in-tube processes – Secondary phase intragrain nanolayers as an oxygen content indicator. Physica C 516, 1 (2015)

    ADS  Article  Google Scholar 

  38. 38.

    J.D. DeFouw, D.C. Dunand, Mechanisms and kinetics of MgB2 synthesis from boron fibers. Acta Mater. 56, 5751 (2008)

    ADS  Article  Google Scholar 

  39. 39.

    P. Kováč, I. Hušek, T. Melišek, L. Kopera, M. Kulich. Fast creation of dense MgB2 phase in wires made by IMD process, Supercond. Sci. Technol. 29(10), 10LT01 (2016)

  40. 40.

    K. Torkar, H. Krischen, E. Hitsch, Darstellung und Identifizierung von Bariumdiborid. Monath. Chem. 103, 744 (1972)

    Article  Google Scholar 

  41. 41.

    D.G. Hinks, J.D. Jorgensen, H. Zheng, S. Short, Synthesis and stoichiometry of MgB2. Physica C 382, 166 (2002)

    ADS  Article  Google Scholar 

  42. 42.

    N.D. Zhigadlo, S. Katrych, J. Karpinski, B. Batlogg, Influence of Mg deficiency on crystal structure and superconducting properties in MgB2 single crystals. Phys. Rev. B 81, 054520 (2010)

    ADS  Article  Google Scholar 

  43. 43.

    A. Serquis, Y.T. Zhu, E.J. Peterson, J.Y. Coulter, D.E. Peterson, F.M. Mueller, Effect of lattice strain and defects on superconductivity of MgB2. Appl. Phys. Lett. 79, 4399 (2001)

    ADS  Article  Google Scholar 

  44. 44.

    E.W. Collings, M.D. Sumption, M. Bhatia, M. Susuner, S.D. Bohnenstiehl, Prospects for improving the intrinsic and extrinsic properties of magnesium diboride superconducting strands. Supercond. Sci. Technol. 21, 103001 (2008)

    ADS  Article  Google Scholar 

  45. 45.

    R. Zeng et al., Stress/strain induced flux pinning in highly dense MgB2 bulks. IEEE Trans. Appl. Supercond. 19, 2722 (2009)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. B. Brunner and Dr. M. Kulich for doped and undoped MgB2 wires. We thank J. Scheiter from Institute for Metallic Materials, Leibniz-Institute for Solid State and Materials Research (IFW), Dresden, Germany, for TEM specimen preparation. This work was supported by the Slovak Scientific Agencies Agentúra pre podporu výskumu a vývoja (project APVV-18-0271) and Vedecká grantová agentúra MŠVVaŠ a SAV (project VEGA 2/0140/19).

Funding

This work was supported by the Slovak Scientific Agencies APVV and VEGA under the following projects: VEGA 2/0140/19 and APVV-18–0271.

Author information

Affiliations

Authors

Contributions

Alica Rosová contributed to the conceptualization, investigation, data curation, writing and visualization. Igor Maťko was involved in the investigation and visualization. Edmund Dobročka contributed to the investigation.

Corresponding author

Correspondence to A. Rosová.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Availability of data and material

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosová, A., Maťko, I. & Dobročka, E. BaZrO3 dopant interactions during MgB2 wire formation by modified internal magnesium diffusion process. Appl. Phys. A 127, 152 (2021). https://doi.org/10.1007/s00339-021-04301-6

Download citation

Keywords

  • MgB2
  • Microstructure; superconductors; IMD
  • Doping
  • Strain