Modulation of morphological, optical and magnetic properties of Cr-doped La0.9Ce0.1FeO3 nanoferrites synthesized by surface-active ionic liquid aided hydrothermal route

Abstract

The impact of doping of Cr ion on structural, magnetic and optical properties of La0.9Ce0.1Fe1-xCrxO3 nanoferrites synthesized by surface-active ionic liquid (SAIL) aided hydrothermal route has been investigated. The presence of different oxidation state of Cr leads to appearance of secondary phases in Cr-doped La0.9Ce0.1Fe1-xCrxO3 samples as indicated by results obtained from XRD, FT-IR and Raman spectroscopy. Mӧssbauer spectroscopy and magnetic studies also revealed structural distortion and formation of mixed phases in Cr-doped samples. The random occupancy by Cr at Fe-site leads to decrease in magnetization. The use of SAILs for preparation of nanoferrites helped to achieve directional growth of nanoparticles as suggested by transmission electron microscopy (TEM). It is anticipated that present study would help to understand the role of Cr ion in modulating various physico-chemical properties of La0.9Ce0.1FeO3.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    A. Manthiram, J.H. Kim, Y.N. Kim, K.T. Lee, Crystal chemistry and properties of mixed ionic-electronic conductors. J. Electroceram. 27, 93 (2011)

    Article  Google Scholar 

  2. 2.

    A.M. Ritzmann, A.B. Munoz-Garcia, J.A. Keith, E.A. Carter, Ab initio evaluation of oxygen diffusivity in LaFeO3: the role of lanthanum vacancies. MRS Commun. 3, 161 (2013)

    Article  Google Scholar 

  3. 3.

    A. Delmastro, D. Mazza, S. Ronchetti, M. Vallino, R. Spinicci, P. Brovetto, M. Salis, Synthesis and characterization of non-stoichiometric LaFeO3 perovskite. Mater. Sci. Eng. B 79, 140 (2001)

    Article  Google Scholar 

  4. 4.

    Y.-G. Cho, K.H. Choi, Y.-R. Kim, J.-S. Jung, S.H. Lee, Bull, , Characterization and catalytic properties of surface La-rich LaFeO3 Perovskite. Korean Chem. Soc. 30(6), 1368–1372 (2009)

    Article  Google Scholar 

  5. 5.

    R. Andoulsin, K.H. Naifer, M. Fe´rid, , Electrical conductivity of La1−xCaxFeO3−δ solid solutions. Ceram. Int. 39(6), 6527–6531 (2013)

    Article  Google Scholar 

  6. 6.

    L.G. Tejuca, J.L.G. Fierro, Properties and Applications of Perovskite-Type Oxides Chemical Industries (CRC Press, Madrid, 1993).

    Google Scholar 

  7. 7.

    L. Qiao, H.Y. Xiao, S.M. Heald, M.E. Bowden, T. Varga, G.J. Exarhos, M.D. Biegalski, I.N. Ivanov, W.J. Weber, T.C. Droubay, S.A. Chambers, J. Mater. Chem. C. 1, 4527–4535 (2013)

    Article  Google Scholar 

  8. 8.

    R. Polini, A. Pamio, E. Traversa. J. Eur. Ceram. Soc. 24, 1365–1370 (2004)

    Article  Google Scholar 

  9. 9.

    C.F. Gainer, M. Romanowsk, J Innov Opt Health Sci 7, 1330007 (2014)

    Article  Google Scholar 

  10. 10.

    N. Afifah, R. Saleh, J. Phys. Conf. Ser. 701, 012030 (2016)

    Article  Google Scholar 

  11. 11.

    X. Liu, X. Duan, Q. Qin, Q. Wang, W. Zheng, Cryst Eng Comm. 15, 3284–3287 (2013)

    Article  Google Scholar 

  12. 12.

    A.Z. Hezave, S.D.S. Ayatollahi, M. Nabipour, B. Hemmateenejad, Colloids Surf. A 421, 63–71 (2013)

    Article  Google Scholar 

  13. 13.

    Z. He, P. Alexandridis, Phys. Chem. Chem. Phys. 17, 18238 (2015)

    Article  Google Scholar 

  14. 14.

    Good enough JB, , Theory of the role of covalence in the perovskite-type manganites La M(II)MnO3. Phys. Rev. 100, 564–573 (1955)

    ADS  Article  Google Scholar 

  15. 15.

    J. Kanamori, J. Phys. Chem. Solids 10, 87–98 (1959)

    ADS  Article  Google Scholar 

  16. 16.

    A. Belayachi, E. Loudghuu, M.E. Yamani, M. Nogues, J.L. Dormann, M. Taibi, Ann. Chim. Sci. Mat. 23, 297–300 (1998)

    Article  Google Scholar 

  17. 17.

    A.K. Azad, A. Mellerga, S.-G. Eriksson, S.A. Ivanov, S.M. Yunus, F. Lindberg, G. Svensson, R. Mathieu, Mater. Res. Bull. 40, 1633–1644 (2005)

    Article  Google Scholar 

  18. 18.

    F.A. Fabian, P.P. Pedra, J.L.S. Filho, J.G.S. Duque, C.T. Meneses, J. Magn. Magn. Mater. 379, 80–83 (2015)

    ADS  Article  Google Scholar 

  19. 19.

    W. Hu, Y. Chen, H. Yuan, G. Zhang, G. Li, G. Pang, S. Feng, J. Solid State Chem. 183, 1582–1587 (2010)

    ADS  Article  Google Scholar 

  20. 20.

    A.P. Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, I.P. Muthuselvam, F.C. Chou, J. Alloys and Compounds. 646, 924–931 (2015)

    Article  Google Scholar 

  21. 21.

    M.V. Kuznetsov, Q.A. Pankhurst, I.P. Parkinc, Y.G. Morozov, J. Mater. Chem. 11, 854–858 (2001)

    Article  Google Scholar 

  22. 22.

    T. Aril, A. Kishi, M. Ogawa, Y. Sawada, Anal. Sci. 17, 875–880 (2001)

    Article  Google Scholar 

  23. 23.

    H.M. Kamari, N.M. Al-Hada, A.A. Baqer, A.H. Shaari, E. Saion, J. Mater. Sci. Mater. 30(8), 8035–8046 (2019)

    Article  Google Scholar 

  24. 24.

    P. Melnikov, V.A. Nascimento, I.V. Arkhangelsky, L.Z. Zanoni Consolo, L.C.S. de Oliveira, J Therm Anal Calorim. 115, 145–151 (2014)

    Article  Google Scholar 

  25. 25.

    K.N. Woods, T.-H. Chiang, P.N. Plassmeyer, M.G. Kast, A.C. Lygo, A.K. Grealish, S.W. Boettcher, C.J. Page, A.C.S. Appl, Mater. Interfaces 9, 10897–10903 (2017)

    Article  Google Scholar 

  26. 26.

    P.S. Shikha, T.S. Kang, B.S. Randhawa, RSC Adv. 5, 96799–96808 (2015)

    ADS  Article  Google Scholar 

  27. 27.

    Y. Janbutrach, S. Hunpratub, E. Swatsitang, Nanoscale Res. Lett. 9, 498 (2014)

    ADS  Article  Google Scholar 

  28. 28.

    S. Pattanayak, R.N.P. Choudhary, P.R. Das, Electron. Mater. Lett. 10, 165–172 (2014)

    Article  Google Scholar 

  29. 29.

    S.S. Arafat, S. Ibrahim, Mater Sci Appl 8, 716–725 (2017)

    Google Scholar 

  30. 30.

    X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, Mater. Chem. Phys. 78, 25 (2002)

    Article  Google Scholar 

  31. 31.

    H. Cui, M. Zayat, D. Levy, J. Non-Cryst, Solids. 352, 3035–3040 (2006)

    Google Scholar 

  32. 32.

    J. Feng, T. Liu, Y. Xu, J. Zhao, Y. He, Ceram Int. 37, 1203–1207 (2011)

    Article  Google Scholar 

  33. 33.

    C. Jagadeeshwaran, A. P. Blessington, Selvadurai, V. Pazhanivelu and R. Murugaraj, (2013) International Journal of Innovative Research in Science and Engineering ISSN (Online), 2347–3207.

  34. 34.

    R.S. Das, Y.K. Agrawal, Vib. Spectrosc 57, 163–176 (2011)

    Article  Google Scholar 

  35. 35.

    M. Popa, J. Frantti, M. Kakihana, Solid State Ion. 154, 437–445 (2002)

    Article  Google Scholar 

  36. 36.

    K. Li, D. Wang, F. Wu, T. Xie, T. Li, Mater. Chem. Phys. 64, 269–272 (2000)

    Article  Google Scholar 

  37. 37.

    P.S. Shikha Komal, T.S. Kang, B.S. Randhawa, J. Alloys Compd 701, 788–796 (2017)

    Article  Google Scholar 

  38. 38.

    P.S. Shikha, T.S. Kang, B.S. Randhawa, J. Alloy. Compd. 625, 336–345 (2015)

    Article  Google Scholar 

  39. 39.

    X. Li, X. Cui, X. Liu, M. Jin, L. Xiao, M. Zhao, Hyperfine Interact. 69, 851 (1992)

    ADS  Article  Google Scholar 

  40. 40.

    B.C. Luo, C.L. Chen, Z. Xu, Q. Xi, Phys. Lett. A. 374, 4265–4268 (2010)

    ADS  Article  Google Scholar 

  41. 41.

    J. Kanamori, J. Phys. Chem. Solids. 10, 87–98 (1959)

    ADS  Article  Google Scholar 

  42. 42.

    P. Baettig, N. Spaldin, Appl. Phys. Lett. 86(1), 012505 (2005)

    ADS  Article  Google Scholar 

  43. 43.

    A.P. Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, I.P. Muthuselvam, F.C. Chou, J. Alloys Compd. 646, 924–931 (2015)

    Article  Google Scholar 

  44. 44.

    M.E. Castrej, M.G. Guaderrama, L. Fuentes, J.P. Gonjal, A.M. Gonzalez, M.A. de la Rubia, R.M. García-Hernandez, E. Moran, Inorg. Chem. 50, 8340–8347 (2011)

    Article  Google Scholar 

  45. 45.

    L. Yuan, K. Huang, C. Hou, W. Feng, S. Wang, C. Zhou, S. Feng, New J. Chem. 38, 1168–1172 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

Komal is thankful to UGC Government of India for the award of SRF. The authors are highly thankful to Council of Scientific and Industrial Research (CSIR), New Delhi for financial assistance provided vide project number (01/2548/11-EMR-II).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tejwant Singh Kang.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arora, K., Shikha, P., Abdelbaky, R.M.K. et al. Modulation of morphological, optical and magnetic properties of Cr-doped La0.9Ce0.1FeO3 nanoferrites synthesized by surface-active ionic liquid aided hydrothermal route. Appl. Phys. A 127, 141 (2021). https://doi.org/10.1007/s00339-021-04294-2

Download citation

Keywords

  • Doped nanomaterials
  • Oxidation state
  • Hydrothermal route
  • Mӧssbauer spectroscopy