Abstract
Use of inorganic charge transport layer has demonstrated relatively stable perovskite solar cells (PSCs). NiOx is the most widely used inorganic hole transport layer in inverted PSCs and different techniques and doping in this layer have been reported to improve the performance of these devices. This manuscript describes the synthesis of NiOx thin film which act as hole transport layer on glass substrate at the initial stage and PSC devices were fabricated at the secondary stage. Effect of post deposition annealing temperature on the composition, tuning of the work function and aligning it with perovskite work function increase the hole transport efficiency and improve the open circuit voltage of devices from 0.96 to 1.08 V is reported. Ultraviolet photoelectron spectroscopy results were used to check the change in work function and X-ray photoelectron spectroscopy to probe the underlying reason for improvement of devices are also included. The charge transfer efficiency is checked by the results of time resolved photoluminescence spectra is also given. Devices with NiOx as hole transport layer and ZnSe as electron transport layer are also described and performance of devices is also included in this manuscript.
This is a preview of subscription content, access via your institution.







References
- 1.
Y. Wei, K. Yao, X. Wang, Y. Jiang, X. Liu, N. Zhou, F. Li, Appl. Surf. Sci. 427, 782 (2018). https://doi.org/10.1016/j.apsusc.2017.08.184
- 2.
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012). https://doi.org/10.1126/science.1228604
- 3.
Research Cell Record Efficiency Chart by National Renewable Energy Laboratory (NREL), https://www.nrel.gov/pv/assets/images/efficiency-chart.png (Accessed March 2019).
- 4.
P. Zhou et al., J. Mater. Chem. C 6, 5733 (2018). https://doi.org/10.1039/C8TC01345D
- 5.
J. Kim, N. Park, J.S. Yun, S. Huang, M.A. Green, A.W.Y. Ho-Baillie, Sol. Energy Mater. Sol. Cells 162, 41 (2017)
- 6.
K. Sun, J. Chang, F.H. Isikgor, P. Li, J. Ouyang, Nanoscale 7, 896 (2015)
- 7.
J.H. Kim, P.-W. Liang, S.T. Williams, N. Cho, C.-C. Chueh, M.S. Glaz, D.S. Ginger, A.K.-Y. Jen, Adv. Mater. 27, 695 (2015)
- 8.
P.-P. Zhang, Z.-J. Zhou, D.-X. Kou, S.-X. Wu, Int. J. Photoenergy 2017(10), 6109092 (2017)
- 9.
K. Takahashi and Y. Suzuki, Jpn. J. Appl. Phys. 56, 08MC04 (2017).
- 10.
N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, M. Grätzel, Science 358, 768 (2017)
- 11.
C. Liu, W. Li, J. Chen, J. Fan, Y. Mai, R.E.I. Schropp, Nano Energy 41, 75 (2017)
- 12.
Y. Li, Y. Zhao, Q. Chen, Y. Yang, Y. Liu, Z. Hong, Z. Liu, Y.-T. Hsieh, L. Meng, Y. Li, Y. Yang, J. Am. Chem. Soc 137, 15540 (2015)
- 13.
J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li and C. J. Brabec, Chem. Mater. 27 (1), 227–234 (2015).
- 14.
K. Wojciechowski, T. Leijtens, S. Siprova, C. Schlueter, M.T. Hörantner, J.T.-W. Wang, C.-Z. Li, A.K.Y. Jen, T.-L. Lee, H.J. Snaith, J. Phys. Chem. Lett. 6(12), 2399–2405 (2015)
- 15.
M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013)
- 16.
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Science 348, 1234 (2015)
- 17.
G. Yin, H. Zhao, J. Feng, J. Sun, J. Yan, Z. Liu, S. Lin, S. Liu, J. Mater. Chem. A 6, 9132 (2018)
- 18.
D. Liu, T.L. Kelly, Nat. Photonics 8, 133 (2013)
- 19.
M. Imran, H. Coşkun, F.H. Isikgor, L. Bichen, N.A. Khan, J. Ouyang, J. Mater. Chem. A 6, 22713 (2018)
- 20.
X. Li, J. Yang, Q. Jiang, H. Lai, S. Li, J. Xin, W. Chu, J. Hou, ACS Nano 12, 5605 (2018)
- 21.
W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 137, 6730 (2015)
- 22.
W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, C. Huang, Nanoscale 8, 10806 (2016)
- 23.
H. Coskun, F.H. Isikgor, Z. Chen, M. Imran, B. Li, Q. Xu, J. Ouyang, J. Mater. Chem. A 7, 4759 (2019)
- 24.
J.W. Jung, C.C. Chueh, A.K.Y. Jen, Adv. Energy Mater. 5, 1500486 (2015)
- 25.
J.Y. Jeng, K.C. Chen, T.Y. Chiang, P.Y. Lin, T.D. Tsai, Y.C. Chang, T.F. Guo, P. Chen, T.C. Wen, Y.J. Hsu, Adv. Mater. 26(24), 4107–4113 (2014)
- 26.
A. Huang, J. Zhu, J. Zheng, Y. Yu, Y. Liu, S. Yang, S. Bao, L. Lei, P. Jin, J. Mater. Chem. C 4, 10839 (2016)
- 27.
S. Seo, I.J. Park, M. Kim, S. Lee, C. Bae, H.S. Jung, N.-G. Park, J.Y. Kim, H. Shin, Nanoscale 8, 11403 (2016)
- 28.
I.J. Park, G. Kang, M.A. Park, J.S. Kim, S.W. Seo, D.H. Kim, K. Zhu, T. Park, J.Y. Kim, Chemsuschem 10, 2660 (2017)
- 29.
Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, Z. Zhou, T. Noda, L. Han, Adv. Mater. 29, 1701073 (2017)
- 30.
J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)
- 31.
Z. Zonglong, B. Yang, L. Xiao, C. Chu-Chen, Y. Shihe, and J. A. K.-Y., Adv. Mater. 28, 6478 (2016).
- 32.
X. Yin, M. Que, Y. Xing, W. Que, J. Mater. Chem. A 3, 24495 (2015)
- 33.
H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K.S. Wong, A.K.-Y. Jen, W.C. Choy, ACS Nano 10, 1503 (2015)
- 34.
M.-H. Liu, Z.-J. Zhou, P.-P. Zhang, Q.-W. Tian, W.-H. Zhou, D.-X. Kou, S.-X. Wu, Opt. Express 24, A1349 (2016)
- 35.
Z. Yang, C.-C. Chueh, P.-W. Liang, M. Crump, F. Lin, Z. Zhu, A.K.-Y. Jen, Nano Energy 22, 328 (2016)
- 36.
H. Zhang, J. Cheng, D. Li, F. Lin, J. Mao, C. Liang, A.K.Y. Jen, M. Grätzel, W.C. Choy, Adv. Mater. 29, 1604695 (2017)
- 37.
H.L. Zhu, J. Cheng, D. Zhang, C. Liang, C.J. Reckmeier, H. Huang, A.L. Rogach, W.C. Choy, ACS Nano 10, 6808 (2016)
- 38.
W. Chen, F.-Z. Liu, X.-Y. Feng, A. B. Djurišić, W. K. Chan, and Z.-B. He, Adv. Energy Mater. 7 (2017).
- 39.
A. Abrusci, S.D. Stranks, P. Docampo, H.-L. Yip, A.K.Y. Jen, H.J. Snaith, Nano Lett. 13, 3124 (2013)
- 40.
A.H. Proppe, R. Quintero-Bermudez, H. Tan, O. Voznyy, S.O. Kelley, E.H. Sargent, J. Am. Chem. Soc. 140, 2890 (2018)
- 41.
P. Zhao et al., ACS Appl. Mater. Interfaces 10, 10132 (2018)
Acknowledgements
This project is financially supported by the Higher Education Commission of Pakistan for the project 35 IRSIP PSc 16 and the HIFES Seed Funding-2017-01 Grant (R-263-501-012-133) Hybrid Integration of Flexible Power Source and Pressure Sensors.”
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Imran, M., Coskun, H., Khan, N.A. et al. Role of annealing temperature of nickel oxide (NiOx) as hole transport layer in work function alignment with perovskite. Appl. Phys. A 127, 117 (2021). https://doi.org/10.1007/s00339-021-04283-5
Received:
Accepted:
Published:
Keywords
- Perovskite solar cells
- NiOx
- ZnSe
- Interfacial material
- Hole collection