Role of annealing temperature of nickel oxide (NiOx) as hole transport layer in work function alignment with perovskite

Abstract

Use of inorganic charge transport layer has demonstrated relatively stable perovskite solar cells (PSCs). NiOx is the most widely used inorganic hole transport layer in inverted PSCs and different techniques and doping in this layer have been reported to improve the performance of these devices. This manuscript describes the synthesis of NiOx thin film which act as hole transport layer on glass substrate at the initial stage and PSC devices were fabricated at the secondary stage. Effect of post deposition annealing temperature on the composition, tuning of the work function and aligning it with perovskite work function increase the hole transport efficiency and improve the open circuit voltage of devices from 0.96 to 1.08 V is reported. Ultraviolet photoelectron spectroscopy results were used to check the change in work function and X-ray photoelectron spectroscopy to probe the underlying reason for improvement of devices are also included. The charge transfer efficiency is checked by the results of time resolved photoluminescence spectra is also given. Devices with NiOx as hole transport layer and ZnSe as electron transport layer are also described and performance of devices is also included in this manuscript.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Y. Wei, K. Yao, X. Wang, Y. Jiang, X. Liu, N. Zhou, F. Li, Appl. Surf. Sci. 427, 782 (2018). https://doi.org/10.1016/j.apsusc.2017.08.184

    ADS  Article  Google Scholar 

  2. 2.

    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012). https://doi.org/10.1126/science.1228604

    ADS  Article  Google Scholar 

  3. 3.

    Research Cell Record Efficiency Chart by National Renewable Energy Laboratory (NREL), https://www.nrel.gov/pv/assets/images/efficiency-chart.png (Accessed March 2019).

  4. 4.

    P. Zhou et al., J. Mater. Chem. C 6, 5733 (2018). https://doi.org/10.1039/C8TC01345D

    Article  Google Scholar 

  5. 5.

    J. Kim, N. Park, J.S. Yun, S. Huang, M.A. Green, A.W.Y. Ho-Baillie, Sol. Energy Mater. Sol. Cells 162, 41 (2017)

    Article  Google Scholar 

  6. 6.

    K. Sun, J. Chang, F.H. Isikgor, P. Li, J. Ouyang, Nanoscale 7, 896 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    J.H. Kim, P.-W. Liang, S.T. Williams, N. Cho, C.-C. Chueh, M.S. Glaz, D.S. Ginger, A.K.-Y. Jen, Adv. Mater. 27, 695 (2015)

    Article  Google Scholar 

  8. 8.

    P.-P. Zhang, Z.-J. Zhou, D.-X. Kou, S.-X. Wu, Int. J. Photoenergy 2017(10), 6109092 (2017)

    Google Scholar 

  9. 9.

    K. Takahashi and Y. Suzuki, Jpn. J. Appl. Phys. 56, 08MC04 (2017).

  10. 10.

    N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, M. Grätzel, Science 358, 768 (2017)

    ADS  Article  Google Scholar 

  11. 11.

    C. Liu, W. Li, J. Chen, J. Fan, Y. Mai, R.E.I. Schropp, Nano Energy 41, 75 (2017)

    Article  Google Scholar 

  12. 12.

    Y. Li, Y. Zhao, Q. Chen, Y. Yang, Y. Liu, Z. Hong, Z. Liu, Y.-T. Hsieh, L. Meng, Y. Li, Y. Yang, J. Am. Chem. Soc 137, 15540 (2015)

    Article  Google Scholar 

  13. 13.

    J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li and C. J. Brabec, Chem. Mater. 27 (1), 227–234 (2015).

  14. 14.

    K. Wojciechowski, T. Leijtens, S. Siprova, C. Schlueter, M.T. Hörantner, J.T.-W. Wang, C.-Z. Li, A.K.Y. Jen, T.-L. Lee, H.J. Snaith, J. Phys. Chem. Lett. 6(12), 2399–2405 (2015)

    Article  Google Scholar 

  15. 15.

    M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013)

    ADS  Article  Google Scholar 

  16. 16.

    W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Science 348, 1234 (2015)

    ADS  Article  Google Scholar 

  17. 17.

    G. Yin, H. Zhao, J. Feng, J. Sun, J. Yan, Z. Liu, S. Lin, S. Liu, J. Mater. Chem. A 6, 9132 (2018)

    Article  Google Scholar 

  18. 18.

    D. Liu, T.L. Kelly, Nat. Photonics 8, 133 (2013)

    ADS  Article  Google Scholar 

  19. 19.

    M. Imran, H. Coşkun, F.H. Isikgor, L. Bichen, N.A. Khan, J. Ouyang, J. Mater. Chem. A 6, 22713 (2018)

    Article  Google Scholar 

  20. 20.

    X. Li, J. Yang, Q. Jiang, H. Lai, S. Li, J. Xin, W. Chu, J. Hou, ACS Nano 12, 5605 (2018)

    Article  Google Scholar 

  21. 21.

    W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 137, 6730 (2015)

    Article  Google Scholar 

  22. 22.

    W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, C. Huang, Nanoscale 8, 10806 (2016)

    ADS  Article  Google Scholar 

  23. 23.

    H. Coskun, F.H. Isikgor, Z. Chen, M. Imran, B. Li, Q. Xu, J. Ouyang, J. Mater. Chem. A 7, 4759 (2019)

    Article  Google Scholar 

  24. 24.

    J.W. Jung, C.C. Chueh, A.K.Y. Jen, Adv. Energy Mater. 5, 1500486 (2015)

    Article  Google Scholar 

  25. 25.

    J.Y. Jeng, K.C. Chen, T.Y. Chiang, P.Y. Lin, T.D. Tsai, Y.C. Chang, T.F. Guo, P. Chen, T.C. Wen, Y.J. Hsu, Adv. Mater. 26(24), 4107–4113 (2014)

    Article  Google Scholar 

  26. 26.

    A. Huang, J. Zhu, J. Zheng, Y. Yu, Y. Liu, S. Yang, S. Bao, L. Lei, P. Jin, J. Mater. Chem. C 4, 10839 (2016)

    Article  Google Scholar 

  27. 27.

    S. Seo, I.J. Park, M. Kim, S. Lee, C. Bae, H.S. Jung, N.-G. Park, J.Y. Kim, H. Shin, Nanoscale 8, 11403 (2016)

    ADS  Article  Google Scholar 

  28. 28.

    I.J. Park, G. Kang, M.A. Park, J.S. Kim, S.W. Seo, D.H. Kim, K. Zhu, T. Park, J.Y. Kim, Chemsuschem 10, 2660 (2017)

    Article  Google Scholar 

  29. 29.

    Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, Z. Zhou, T. Noda, L. Han, Adv. Mater. 29, 1701073 (2017)

    Article  Google Scholar 

  30. 30.

    J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)

    ADS  Article  Google Scholar 

  31. 31.

    Z. Zonglong, B. Yang, L. Xiao, C. Chu-Chen, Y. Shihe, and J. A. K.-Y., Adv. Mater. 28, 6478 (2016).

  32. 32.

    X. Yin, M. Que, Y. Xing, W. Que, J. Mater. Chem. A 3, 24495 (2015)

    Article  Google Scholar 

  33. 33.

    H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K.S. Wong, A.K.-Y. Jen, W.C. Choy, ACS Nano 10, 1503 (2015)

    Article  Google Scholar 

  34. 34.

    M.-H. Liu, Z.-J. Zhou, P.-P. Zhang, Q.-W. Tian, W.-H. Zhou, D.-X. Kou, S.-X. Wu, Opt. Express 24, A1349 (2016)

    Article  Google Scholar 

  35. 35.

    Z. Yang, C.-C. Chueh, P.-W. Liang, M. Crump, F. Lin, Z. Zhu, A.K.-Y. Jen, Nano Energy 22, 328 (2016)

    Article  Google Scholar 

  36. 36.

    H. Zhang, J. Cheng, D. Li, F. Lin, J. Mao, C. Liang, A.K.Y. Jen, M. Grätzel, W.C. Choy, Adv. Mater. 29, 1604695 (2017)

    Article  Google Scholar 

  37. 37.

    H.L. Zhu, J. Cheng, D. Zhang, C. Liang, C.J. Reckmeier, H. Huang, A.L. Rogach, W.C. Choy, ACS Nano 10, 6808 (2016)

    Article  Google Scholar 

  38. 38.

    W. Chen, F.-Z. Liu, X.-Y. Feng, A. B. Djurišić, W. K. Chan, and Z.-B. He, Adv. Energy Mater. 7 (2017).

  39. 39.

    A. Abrusci, S.D. Stranks, P. Docampo, H.-L. Yip, A.K.Y. Jen, H.J. Snaith, Nano Lett. 13, 3124 (2013)

    ADS  Article  Google Scholar 

  40. 40.

    A.H. Proppe, R. Quintero-Bermudez, H. Tan, O. Voznyy, S.O. Kelley, E.H. Sargent, J. Am. Chem. Soc. 140, 2890 (2018)

    Article  Google Scholar 

  41. 41.

    P. Zhao et al., ACS Appl. Mater. Interfaces 10, 10132 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This project is financially supported by the Higher Education Commission of Pakistan for the project 35 IRSIP PSc 16 and the HIFES Seed Funding-2017-01 Grant (R-263-501-012-133) Hybrid Integration of Flexible Power Source and Pressure Sensors.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Imran.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Imran, M., Coskun, H., Khan, N.A. et al. Role of annealing temperature of nickel oxide (NiOx) as hole transport layer in work function alignment with perovskite. Appl. Phys. A 127, 117 (2021). https://doi.org/10.1007/s00339-021-04283-5

Download citation

Keywords

  • Perovskite solar cells
  • NiOx
  • ZnSe
  • Interfacial material
  • Hole collection