Influence of hBN content on dielectric properties of calcium silicate for high-frequency substrate application

Abstract

We report a method for the fabrication of multilayer calcium silicate (Sc) ceramic composite containing 1, 3, and 5 wt.\(\%\) of hexagonal boron nitride (hBN). The multilayer ceramic tapes were engineered using aqueous tape casting, laminating process, and pressureless sintering at 1050 \(^{\circ }\)C in an argon atmosphere. The structural and dielectric properties of the multilayer hBN-doped Sc ceramic tapes were investigated through several characterization techniques. We observed a stable behavior of the relative dielectric constants (1.99–2.22 range) for the multilayer hBN-doped Sc ceramic tapes at high-frequency regime. Also, we verified a considerable reduction of the dielectric losses of around 20\(\times \) as the amount of hBN increases. Our results show that multilayer hBN-doped Sc ceramic tapes are promising candidates for high-frequency substrate applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    H. Zuo, X. Tang, H. Zhang, Y. Lai, Y. Jing, H. Su, Ceram. int. 43, 8951–8955 (2017)

    Article  Google Scholar 

  2. 2.

    S. Takahashi, Y. Imai, A. Kan, Y. Hotta, H. Ogawa, J. Alloys. Compd. 615, 141–145 (2014)

    Article  Google Scholar 

  3. 3.

    M. He, S. Zhang, X. Zhou, B. Li, J. Wan, J. Alloys. Compd. 509, 4260–4263 (2011)

    Article  Google Scholar 

  4. 4.

    H.H. Guo, D. Zhou, C. Du, P. Wang, W. Liu, L. Pang, Q. Wang, J. Su, C. Singh, S. Trukhanov, J. Mater. Chem. C. 8, 4690–4700 (2020)

    Article  Google Scholar 

  5. 5.

    O. Elkady, A. Abu-Oqail, E. Ewais, M. El-Sheikh, J. Alloys. Compd. 625, 309–317 (2015)

    Article  Google Scholar 

  6. 6.

    S. Danewalia, G. Sharma, S. Thakur, K. Singh, Sci. Rep. 6, 24617 (2016)

    ADS  Article  Google Scholar 

  7. 7.

    Y. Chen, L. Zhang, J. Liu, X. Lin, W. Xu, Y. Yue, Q. Shen, Carbon. 144, 15–23 (2019)

    Article  Google Scholar 

  8. 8.

    M. Sebastian, R. Ubic, H. Jantunen, Int. Mater. Rev. 60, 392–412 (2015)

    Article  Google Scholar 

  9. 9.

    H. Kähäri, M. Teirikangas, J. Juuti, H. Jantunen, Ceram. int. 42, 11442–11446 (2016)

    Article  Google Scholar 

  10. 10.

    H. Zhu, R. Fu, S. Agathopoulos, J. Fang, G. Li, Q. He, Ceram. int. 44, 10147–10153 (2018)

    Article  Google Scholar 

  11. 11.

    D. He, C. Gao, Ceram. int. 44, 16246–16255 (2018)

    Article  Google Scholar 

  12. 12.

    Q. Wang, C. Bowen, R. Lewis, J. Chen, W. Lei, H. Zhang, M.Y. Li, S. Jiang, Nano. Energy. 60, 144–152 (2019)

    Article  Google Scholar 

  13. 13.

    D. Misra, V. Nemane, S. Mukhopadhyay, S. Chatterjee, Ceram. Int. 46, 9758–9764 (2020)

    Article  Google Scholar 

  14. 14.

    S. Wang, D. Jia, Z. Yang, X. Duan, Z. Tian, Y. Zhou, Ceram. int. 39, 4231–4237 (2013)

    Article  Google Scholar 

  15. 15.

    A. Kovalčíková, J. Balko, C. Balázsi, P. Hvizdoš, J. Dusza, J. Eur. Ceram. Soc. 34, 3319–3328 (2014)

    Article  Google Scholar 

  16. 16.

    J. Guo, A.L. Baker, H. Guo, M. Lanagan, C. Randall, J. Am. Ceram. Soc. 100, 669–677 (2017)

    Article  Google Scholar 

  17. 17.

    L. Wu, F. Xiang, W. Liu, R. Ma, H. Wang, Ceram. int. 44, 16594–16598 (2018)

    Article  Google Scholar 

  18. 18.

    Y. Sun, Z. Yang, D. Cai, Q. Li, H. Li, S. Wang, D. Jia, Y. Zhou, Ceram. int. 43, 8230–8235 (2017)

    Article  Google Scholar 

  19. 19.

    X. Duan, Z. Yang, L. Chen, Z. Tian, D. Cai, Y. Wang, D. Jia, Y. Zhou, J. Eur. Ceram. Soc. 36, 3725–3737 (2016)

    Article  Google Scholar 

  20. 20.

    Y. Shi, Y. Chai, S. Hu, Act. Passiv. Electron. Compon. 2019, (2019)

  21. 21.

    N. Joseph, J. Varghese, M. Teirikangas, T. Vahera, H. Jantunen, ACS. Appl. Mater. Interfaces. 11, 23798–23807 (2019)

    Google Scholar 

  22. 22.

    K. Spaniol, S. Caldas, A. Peres, E. Dos Santos, W. Acchar, Ceram. int. 45, 12417–12422 (2019)

    Article  Google Scholar 

  23. 23.

    A. Freitas, B.M.S. Puton, A. Peres, R.L. Cansian, S. Pergher, W. Acchar, Int. J. Appl. Ceram. Technol. 17, 320–326 (2020)

    Article  Google Scholar 

  24. 24.

    J. Hostaša, A. Piancastelli, G. Toci, M. Vannini, V. Biasini, Opt. Mater. 65, 21–27 (2017)

    ADS  Article  Google Scholar 

  25. 25.

    A. Peres, A. Costa, F. Bohn, M. Correa, W. Acchar, C. Paskocimas, Ceram. int. 44, 16062–16065 (2018)

    Article  Google Scholar 

  26. 26.

    Y. Qiao, Y. Liu, A. Liu, Y. Wang, Ceram. int. 38, 23192324 (2012)

    Google Scholar 

  27. 27.

    R.K. Nishihora, P. Rachadel, M.G.N. Quadri, D. Hotza, J. Eur. Ceram. Soc. 38, 988–1001 (2018)

    Article  Google Scholar 

  28. 28.

    N. Kostoglou, K. Polychronopoulou, C. Rebholz, Vacuum 112, 42–45 (2015)

    ADS  Article  Google Scholar 

  29. 29.

    Q. Li, Z. Yang, Y. Miao, B. Liang, D. Cai, S. Wang, X. Duan, D. Jia, Y. Zhou, RSC. Adv. 7, 48994–49003 (2017)

    ADS  Article  Google Scholar 

  30. 30.

    B. Niu, D. Cai, Z. Yang, X. Duan, Y. Sun, H. Li, W. Duan, D. Jia, Y. Zhou, J. Eur. Ceram. Soc. 39, 539–546 (2019)

    Article  Google Scholar 

  31. 31.

    H. Beglaryan, N. Zulumyan, A. Isahakyan, S. Melikyan, A. Terzyan, Russ. J. Phys. Chem. A 93, 924–931 (2019)

    Article  Google Scholar 

  32. 32.

    E. Mania, A. Alencar, A. Cadore, B. Carvalho, K. Watanabe, T. Taniguchi, B. Neves, H. Chacham, L. Campos, 2D Mater. 4, 031008 (2017)

  33. 33.

    I. Stenger, L. Schué, M. Boukhicha, B. Berini, B. Plaçais, A. Loiseau, J. Barjon, 2D. Mater. 4, 031003 (2017)

  34. 34.

    D. Palmer, R. Hemley, C. Prewitt, Phys. Chem. Miner. 21, 481–488 (1994)

    ADS  Article  Google Scholar 

  35. 35.

    K. Kingma, R.J. Hemley, Am. Mineral. 79, 269–273 (1994)

    Google Scholar 

  36. 36.

    M. Hernández-Ortiz, G. Hernández-Padrón, R. Bernal, C. Cruz-Vázquez, V. Castaño, Int. J. Basic. Appl. Sci. 4, 238 (2015)

    Article  Google Scholar 

  37. 37.

    A. Trukhin, K. Smits, J. Jansons, A. Kuzmin, Radiat. Meas. 90, 6–13 (2016)

    Article  Google Scholar 

  38. 38.

    C. Yin, M. Okuno, H. Morikawa, F. Marumo, T. Yamanaka, J. Non. Cryst. Solids. 80, 167–174 (1986)

    ADS  Article  Google Scholar 

  39. 39.

    A. Buzatu, N. Buzgar, Analele Stiintifice de Universitatii AI Cuza din Iasi Sect 2. Geologie. 56, 107 (2010)

    Google Scholar 

  40. 40.

    E. Huang, C. Chen, T. Huang, E. Lin, J.A. Xu, Am. Mineral. 85, 473–479 (2000)

    ADS  Article  Google Scholar 

  41. 41.

    P. Richet, B.O. Mysen, J. Ingrin, Phys. Chem. Miner. 25, 401–414 (1998)

    ADS  Article  Google Scholar 

  42. 42.

    J. Rusmirović, N. Obradović, J. Perendija, A. Umićević, A. Kapidžić, B. Vlahović, V. Pavlović, A. Marinković, V. Pavlović, Environ. Sci. Pollut. Res. 26, 12379–12398 (2019)

    Article  Google Scholar 

  43. 43.

    J. Silva, N. Neto, M. Oliveira, R. Ribeiro, S. de Lazaro, Y. Gomes, C. Paskocimas, M. Bomio, F. Motta, New J. Chem. 44, 8805–8812 (2020)

    Article  Google Scholar 

  44. 44.

    Y. Feng, H. Gong, Y. Zhang, X. Wang, S. Che, Y. Zhao, X. Guo, Ceram. int. 42, 661–665 (2016)

    Article  Google Scholar 

  45. 45.

    R. Simpkin, IEEE. Trans. Microw. Theory. Tech. 58, 545–550 (2010)

    ADS  Article  Google Scholar 

  46. 46.

    C. Sevik, C. Bulutay, J. Mater. Sci. 42, 6555–6565 (2007)

    ADS  Article  Google Scholar 

  47. 47.

    M. Mohammadi, P. Alizadeh, Z. Atlasbaf, J. Non. Cryst. Solids. 357, 150–156 (2011)

    ADS  Article  Google Scholar 

  48. 48.

    Z. Tian, Y. Yang, Y. Wang, H. Wu, W. Liu, S. Wu, Mater. Lett. 236, 144–147 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES). We also acknowledge the Analytic Central at the Universidade Federal do Rio Grande do Norte for providing the equipment for Raman spectroscopy measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. N. França Junior.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 177kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Junior, S.A.N.F., Souza, A.L.R., Peres, A.P.S. et al. Influence of hBN content on dielectric properties of calcium silicate for high-frequency substrate application. Appl. Phys. A 127, 136 (2021). https://doi.org/10.1007/s00339-021-04277-3

Download citation

Keywords

  • Calcium silicate
  • hBN
  • Tape casting
  • High-frequency substrate
  • Wireless communication