Effect of vacuum annealing on solar light response and photocatalytic performance of Ag nanoparticle-modified ZnO thin films


Ag–ZnO thin films were prepared by a two-step method and then annealed in a vacuum atmosphere at different temperature. It could be seen from the scanning electron microscopy images that the ZnO nanorods collapsed rapidly for the sample annealed at 400 °C (Ag–ZnO-400) and the average diameter of Ag nanoparticles increases with the increasing of annealing temperature. Compared to Ag–ZnO, the Ag–ZnO-400 presents the higher surface plasmon resonance absorbance peak, which was attributed to the increasing of the average diameter of silver nanoparticles. The transient photocurrent curves exhibited that the photocurrent density of Ag–ZnO-400 (~ 0.165 mA/cm−2) was twenty time larger than that of the Ag–ZnO (~ 0.008 mA/cm−2). The photocatalytic degradation efficiency of Ag–ZnO-400 catalysts for the methyl orange in aqueous solutions is over 63%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21, 4087 (2009)

    Article  Google Scholar 

  2. 2.

    M. Mahanti, D. Basak, Chem. Phys. Lett. 542, 110 (2012)

    ADS  Article  Google Scholar 

  3. 3.

    J. Lv, J. Xu, M. Zhao, Y. Sun, Y. Jiang, G. He, M. Zhang, Z. Sun, J. Mater. Sci. Mater. Electron. 27, 4019 (2015)

    Article  Google Scholar 

  4. 4.

    X. Song, L. Liu, Sens. Actuators A 154, 175 (2009)

    Article  Google Scholar 

  5. 5.

    P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, N. Ndiege, Appl. Surf. Sci. 258, 8192 (2012)

    ADS  Article  Google Scholar 

  6. 6.

    S. Iwan, J.L. Zhao, S.T. Tan, X.W. Sun, Vacuum 155, 408 (2018)

    ADS  Article  Google Scholar 

  7. 7.

    P. Sundara Venkatesh, C.L. Dong, C.L. Chen, W.F. Pong, K. Asokan, K. Jeganathan, Mater. Lett. 116, 206 (2014)

    Article  Google Scholar 

  8. 8.

    N. Singh, P. Pandey, F.Z. Haque, Optik. 123, 1340 (2012)

    ADS  Article  Google Scholar 

  9. 9.

    J. Yang, Y. Wang, J. Kong, H. Jia, Z. Wang, Opt. Mater. 46, 179 (2015)

    ADS  Article  Google Scholar 

  10. 10.

    J. Qin, R. Li, C. Lu, Y. Jiang, H. Tang, X. Yang, Ceram. Int. 41, 4231 (2015)

    Article  Google Scholar 

  11. 11.

    X. Liu, F. Li, Y. Wang, H. Jin, H. Wang, Z. Li, Mater. Lett. 94, 19 (2013)

    Article  Google Scholar 

  12. 12.

    J. Lv, Q. Zhu, Z. Zeng, M. Zhang, J. Yang, M. Zhao, W. Wang, Y. Cheng, G. He, Z. Sun, J. Phys. Chem. Solids 111, 104 (2017)

    ADS  Article  Google Scholar 

  13. 13.

    Y. Li, W. Wu, P. Dai, L. Zhang, Z. Sun, G. Li, M. Wu, X. Chen, C. Chen, RSC Adv. 4, 23831 (2014)

    Article  Google Scholar 

  14. 14.

    L. Yang, W. Wang, H. Zhang, S. Wang, M. Zhang, G. He, J. Lv, K. Zhu, Z. Sun, Sol. Energy Mater. Sol. Cells 165, 27 (2017)

    Article  Google Scholar 

  15. 15.

    N.F. Jaafar, A.M.M. Najman, A. Marfur, N.W.C. Jusoh, J. Photochem. Photobiol. A 388, 112202 (2020)

    Article  Google Scholar 

  16. 16.

    L. Rozaa, Y. Febriantib, S. Iwanb, V. Fauziac, Surf Interfaces 18, 100435 (2020)

    Article  Google Scholar 

  17. 17.

    S. Xu, A.J. Du, J. Liu, J. Ng, D.D. Sun, Int. J. Hydrogen Energy 36, 6560 (2011)

    Article  Google Scholar 

  18. 18.

    Y. Liang, N. Guo, L. Li, R. Li, G. Ji, S. Gan, New J. Chem. 40, 1587 (2016)

    Article  Google Scholar 

  19. 19.

    J. Tao, Z. Sun, Y. Cheng, M. Zhang, J. Lv, S. Shi, G. He, X. Jiang, X. Chen, X. Wang, Z. Wang, Z. Gong, Sci. Rep. 7, 5291 (2017)

    ADS  Article  Google Scholar 

  20. 20.

    P. Li, H. Hu, J. Xu, H. Jing, H. Peng, J. Lu, C. Wu, S. Ai, Appl. Catal. B 147, 912 (2014)

    Article  Google Scholar 

  21. 21.

    V. Etacheri, R. Roshan, V. Kumar, Acs Appl. Mater. Interfaces 4, 2717 (2012)

    Article  Google Scholar 

  22. 22.

    X.B. Xiang, Y. Yu, W. Wen, J.M. Wu, New J. Chem. 42, 265 (2018)

    Article  Google Scholar 

  23. 23.

    G. Li, T. Xie, S. Yang, J. Jin, J. Jiang, J. Phys. Chem. C 116, 9196 (2012)

    Article  Google Scholar 

  24. 24.

    B. Xiaojuan, W. Li, Z. Ruilong, L. Yanhui, S. Yiqing, Z. Yongfa, J. Surf. Coll. 29, 3097 (2013)

    Google Scholar 

  25. 25.

    W. Teng, Y. Wang, H. Huang, X. Li, Y. Tang, Appl. Surf. Sci. 425, 507 (2017)

    ADS  Article  Google Scholar 

  26. 26.

    J. Manna, T.P. Vinod, K. Flomin, R. Jelinek, J. Coll. Interface Sci. 460, 113 (2015)

    ADS  Article  Google Scholar 

Download references


This work was supported by National Natural Science Foundation of China (Nos. 51701001, 61804039, 51472003, 51572002), Academic funding projects for Top Talents in Subjects (Majors) of Universities (No. gxbjZD31), Natural Science Foundation of Anhui Higher Education Institution of China (Nos. KJ2019A0734, KJ2019A0736, KJ2017A924, KJ2017A002), Natural Science Foundation of Anhui Province (No. 1808085QE126) and Foundation of Co-operative Innovation Research Center for Weak Signal-Detecting Materials and Devices Integration Anhui University (Nos. Y01008411, WRXH201703).

Author information



Corresponding authors

Correspondence to Congrong Wang or Xiaoshuang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Yang, Z., Wang, C. et al. Effect of vacuum annealing on solar light response and photocatalytic performance of Ag nanoparticle-modified ZnO thin films. Appl. Phys. A 126, 290 (2020). https://doi.org/10.1007/s00339-020-3460-5

Download citation


  • Ag–ZnO
  • Thin film
  • Photocurrent
  • Photocatalytic