Li2O–B2O3–Bi2O3 glasses: gamma-rays and neutrons attenuation study using ParShield/WinXCOM program and Geant4 and Penelope codes

A Correction to this article is available

This article has been updated


For 25 Li2O–(75 − x) B2O3x Bi2O3 (where x = 0, 5, 10, 15, 20, 25, 30, 35, and 40 mol%) glasses, gamma-ray and neutrons attenuation features were explored by theoretical approach using ParShield/WinXCOM program, Geant4, and Penelope codes. At 133Ba (276, 303, 356, and 384 keV), 22Na (511 and 1280 keV), 137Cs (662 keV), 54Mn (835 keV), and 60Co (1170 and 1330 keV) photon peaks, for all samples, mass attenuation coefficient (μ/ρ), effective atomic number (Zeff), effective electron density (Neff), half-value layer (HVL), and mean free path (MFP) parameters have been evaluated using ParShield/WinXCOM program. The μ/ρ values computed by WinXCOM, Geant4, and Penelope codes were compared to check the accuracy, and satisfactory agreement among the values was identified. Moreover, using GP fitting method as a function of penetration depth (1, 5, 10, 15, 20, 25, 30, 35, and 40 mfp) within the photon energy range of 0.015–15 MeV, exposure buildup factor (EBF) and energy absorption buildup factor (EABF) were derived. For all selected glasses, the effectiveness of the neutrons attenuation has been discussed in terms of macroscopic effective removal cross-section (ΣR), coherent scattering cross-section (σcs), incoherent scattering cross-section (σics), absorption cross-section (σA), and total neutron cross-section (σT). The ‘σT’ values have been calculated within 10−4–10−8 MeV neutron energy range using the Geant4 code. The μ/ρ possessed larger values at the lowest energy and lower values at higher energy regions for all studied glasses. The μ/ρ, Zeff, HVL, and MFP values showed enhanced γ-ray shielding capability with Bi2O3 content increment in the samples. The 25 Li2O–35 B2O3–40 Bi2O3 (mol%) sample by having larger Zeq and/or Zeff value, faired lower EBF and EABF values. Largest μ/ρ and Zeff, and minimal HVL, MFP, EBF, and EABF values of 25 Li2O–35 B2O3–40 Bi2O3 (mol%) glass demonstrated its superior γ-ray attenuation ability among all examined glasses. Further, among all glasses, 25 Li2O–75 B2O3 (mol%) sample exhibits relatively higher ΣR (0.11326 cm−1) and ‘σT’ (46.109 cm−1 → 0.84607 cm−1 from 1 × 10−8 MeV → 1×10−4 MeV neutron energy) values for fast and thermal neutrons attenuation, respectively, indicating its better neutrons absorption competence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Change history

  • 10 April 2020

    In the original publication of the article, Fig. 8c was incorrectly placed during type-setting.


  1. 1.

    B. Ahmed, G.B. Shah, A.H. Malik, Aurangzeb, M. Rizwan, Gamma-ray shielding characteristics of flexible silicone tungsten composites. Appl. Radiat. Isot. 155, 108901 (2020)

    Article  Google Scholar 

  2. 2.

    H.C. Manjunatha, K.V. Sathish, L. Seenappa, D. Gupta, S.A.C. Raj, A study of X-ray, gamma and neutron shielding parameters in Si-alloys. Radiat. Phys. Chem. 165, 108414 (2019)

    Article  Google Scholar 

  3. 3.

    T. Shams, M. Eftekhar, A. Shirani, Investigation of gamma radiation attenuation in heavy concrete shields containing hematite and barite aggregates in multi-layered and mixed forms. Constr. Build. Mater. 182, 35–42 (2018)

    Article  Google Scholar 

  4. 4.

    C.-M. Lee, Y.H. Lee, K.J. Lee, Cracking effect on gamma-ray shielding performance in concrete structure. Prog. Nucl. Energy 49, 303–312 (2007)

    ADS  Article  Google Scholar 

  5. 5.

    M.I. Sayyed, A. Kumar, H.O. Tekin, R. Kaur, M. Singh, O. Agar, M.U. Khandaker, Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3–BaO–Na2O–MgO–B2O3 glass systems. Prog. Nucl. Energy 118, 103118 (2020)

    Article  Google Scholar 

  6. 6.

    A.M. El-Khayatt, H.A. Saudy, Preparation and characterization of zinc, lanthanum white sand glass for use in nuclear applications. Radiat. Phys. Chem. 166, 108497 (2020)

    Article  Google Scholar 

  7. 7.

    O. Kilicoglu, H.O. Tekin, Bioactive glasses and direct effect of increased K2O additive for nuclear shielding performance: a comparative investigation. Ceram. Int. 46, 1323–1333 (2020)

    Article  Google Scholar 

  8. 8.

    B.O. Elbashir, M.I. Sayyed, M.G. Dong, Y. Elmahroug, G. Lakshminarayana, I.V. Kityk, Characterization of Bi2O3–ZnO–B2O3 and TeO2–ZnO–CdO–Li2O–V2O5 glass systems for shielding gamma radiation using MCNP5 and Geant4 codes. J. Phys. Chem. Solids 126, 112–123 (2019)

    ADS  Article  Google Scholar 

  9. 9.

    A. Aşkın, M.I. Sayyed, A. Sharma, M. Dal, R. El-Mallawany, M.R. Kaçal, Investigation of the gamma ray shielding parameters of (100 − x)[0.5Li2O–0.1B2O3–0.4P2O5] − xTeO2 glasses using Geant4 and FLUKA codes. J. Non-Cryst. Solids 521, 119489 (2019)

    ADS  Article  Google Scholar 

  10. 10.

    Y.S. Rammah, Evaluation of radiation shielding ability of boro-tellurite glasses: TeO2–B2O3–SrCl2–LiF–Bi2O3. Appl. Phys. A 125, 857/1–11 (2019)

    ADS  Google Scholar 

  11. 11.

    H.A. Saudi, S.U. El-Kameesy, Investigation of modified zinc borate glasses doped with BaO as a nuclear radiation-shielding material. Radiat. Detect. Technol. Methods 2, 44/1–7 (2018)

    Article  Google Scholar 

  12. 12.

    A.E. Ersundu, M. Büyükyıldız, M.Ç. Ersundu, E. Şakar, M. Kurudirek, The heavy metal oxide glasses within the WO3–MoO3–TeO2 system to investigate the shielding properties of radiation applications. Prog. Nucl. Energy 104, 280–287 (2018)

    Article  Google Scholar 

  13. 13.

    G. Lakshminarayana, S.O. Baki, K.M. Kaky, M.I. Sayyed, H.O. Tekin, A. Lira, I.V. Kityk, M.A. Mahdi, Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J. Non-Cryst. Solids 471, 222–237 (2017)

    ADS  Article  Google Scholar 

  14. 14.

    G. Lakshminarayana, M.G. Dong, A. Kumar, Y. Elmahroug, A. Wagh, D.-E. Lee, J. Yoon, T. Park, Assessment of gamma-rays and fast neutron beam attenuation features of Er2O3-doped B2O3–ZnO–Bi2O3 glasses using XCOM and simulation codes (MCNP5 and Geant4). Appl. Phys. A 125, 802/1–14 (2019)

    ADS  Article  Google Scholar 

  15. 15.

    H.O. Tekin, L.R.P. Kassab, S.A.M. Issa, C.D.S. Bordon, E.E.A. Guclu, G.R. da Silva Mattos, O. Kilicoglu, Synthesis and nuclear radiation shielding characterization of newly developed germanium oxide and bismuth oxide glasses. Ceram. Int. Part A 45, 24664–24674 (2019)

    Article  Google Scholar 

  16. 16.

    Y. Al-Hadeethi, S.A. Tijani, The use of lead-free transparent 50BaO–(50 − x)borosilicate–xBi2O3 glass system as radiation shields in nuclear medicine. J. Alloys Compd. 803, 625–630 (2019)

    Article  Google Scholar 

  17. 17.

    M.I. Sayyed, G. Lakshminarayana, M.G. Dong, M.Ç. Ersundu, A.E. Ersundu, I.V. Kityk, Investigation on gamma and neutron radiation shielding parameters for BaO/SrO–Bi2O3–B2O3 glasses. Radiat. Phys. Chem. 145, 26–33 (2018)

    ADS  Article  Google Scholar 

  18. 18.

    M.S. Al-Buriahi, B.T. Tonguc, Study on gamma-ray buildup factors of bismuth borate glasses. Appl. Phys. A 125, 482/1–7 (2019)

    ADS  Google Scholar 

  19. 19.

    M.G. Dong, M.I. Sayyed, G. Lakshminarayana, M.Ç. Ersundu, A.E. Ersundu, P. Nayar, M.A. Mahdi, Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. J. Non-Cryst. Solids 468, 12–16 (2017)

    ADS  Article  Google Scholar 

  20. 20.

    G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Lira, P. Nayar, I.V. Kityk, M.A. Mahdi, Physical, structural, thermal, and optical spectroscopy studies of TeO2–B2O3–MoO3–ZnO–R2O (R = Li, Na, and K)/MO (M = Mg, Ca, and Pb) glasses. J. Alloys Compd. 690, 799–816 (2017)

    Article  Google Scholar 

  21. 21.

    Y.B. Saddeek, E.R. Shaaban, E.S. Moustafa, H.M. Moustafa, Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3–Li2O–B2O3 glasses. Physica B 403, 2399–2407 (2008)

    ADS  Article  Google Scholar 

  22. 22.

    Y. Elmahroug, B. Tellili, C. Souga, K. Manai, ParShield: a computer program for calculating attenuation parameters of the gamma rays and the fast neutrons. Ann. Nucl. Energy 76, 94–99 (2015)

    Article  Google Scholar 

  23. 23.

    PENELOPE2014, A code system for Monte-Carlo simulation of electron and photon transport, NEA-1525 PENELOPE2014.

  24. 24.

    V.P. Singh, N.M. Badiger, Gamma ray and neutron shielding properties of some alloy materials. Ann. Nucl. Energy 64, 301–310 (2014)

    Article  Google Scholar 

  25. 25.

    I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)

    Article  Google Scholar 

  26. 26.

    Neutron Energy—Nuclear Power. Accessed 10 Dec. 2019

  27. 27.

    V.P. Singh, N.M. Badiger, Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glass Phys. Chem. 41, 276–283 (2015)

    Article  Google Scholar 

  28. 28.

    M. Almatari, O. Agar, E.E. Altunsoy, O. Kilicoglu, M.I. Sayyed, H.O. Tekin, Photon and neutron shielding characteristics of samarium doped lead alumino borate glasses containing barium, lithium and zinc oxides determined at medical diagnostic energies. Results Phys. 12, 2123–2128 (2019)

    ADS  Article  Google Scholar 

  29. 29.

    M.I. Sayyed, Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions. Can. J. Phys. 94, 1133–1137 (2016)

    ADS  Article  Google Scholar 

  30. 30.

    O. Kilicoglu, E.E. Altunsoy, O. Agar, M. Kamislioglu, M.I. Sayyed, H.O. Tekin, N. Tarhan, Synergistic effect of La2O3 on mass stopping power (MSP)/projected range (PR) and nuclear radiation shielding abilities of silicate glasses. Results Phys. 14, 102424 (2019)

    Article  Google Scholar 

  31. 31.

    M.B. Chadwick, M. Herman, P. Obložinský et al., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112, 2887–2996 (2011).

    ADS  Article  Google Scholar 

  32. 32.

    Z.F. Li, X.X. Xue, S. Liu, Y. Li, P.N. Duan, Effects of boron number per unit volume on the shielding properties of composites made with boron ores from China. Nucl. Sci. Technol. 23, 344–348 (2012)

    Google Scholar 

  33. 33.

    M.-G. Dong, X.-X. Xue, V.P. Singh, H. Yang, Z.-F. Li, M.I. Sayyed, Shielding effectiveness of boron-containing ores in Liaoning Province of China against gamma rays and thermal neutrons. Nucl. Sci. Technol. 29, 58/1–8 (2018)

    Google Scholar 

  34. 34.

    R. El-Mallawany, M.I. Sayyed, M.G. Dong, Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 151, 239–252 (2018)

    ADS  Article  Google Scholar 

  35. 35.

    M.I. Sayyed, K.M. Kaky, M.H.A. Mhareb, A.H. Abdalsalam, N. Almousa, G. Shkoukani, M.A. Bourham, Borate multicomponent of bismuth rich glasses for gamma radiation shielding application. Radiat. Phys. Chem. 161, 77–82 (2019)

    ADS  Article  Google Scholar 

  36. 36.

    M.I. Sayyed, H.O. Tekin, O. Agar, Gamma photon and neutron attenuation properties of MgO–BaO–B2O3–TeO2–Cr2O3 glasses: the role of TeO2. Radiat. Phys. Chem. 163, 58–66 (2019)

    ADS  Article  Google Scholar 

  37. 37.

    M.G. Dong, R. El-Mallawany, M.I. Sayyed, H.O. Tekin, Shielding properties of 80TeO2–5TiO2–(15 − x) WO3xAnOm glasses using WinXCom and MCNP5 code. Radiat. Phys. Chem. 141, 172–178 (2017)

    ADS  Article  Google Scholar 

  38. 38.

    A. El-Taher, A.M. Ali, Y.B. Saddeek, R. Elsaman, H. Algarni, K.S. Shaaban, T.Z. Amer, Gamma ray shielding and structural properties of iron alkali aluminophosphate glasses modified by PbO. Radiat. Phys. Chem. 165, 108403 (2019)

    Article  Google Scholar 

  39. 39.

    S. Yalcin, B. Aktas, D. Yilmaz, Radiation shielding properties of Cerium oxide and Erbium oxide doped obsidian glass. Radiat. Phys. Chem. 160, 83–88 (2019)

    ADS  Article  Google Scholar 

Download references


This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No. NRF-2018R1A5A1025137), and in part by the Research Fund of Hanyang University (No. HY-2015-G).

Author information



Corresponding authors

Correspondence to G. Lakshminarayana or Jonghun Yoon or Taejoon Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 103 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lakshminarayana, G., Elmahroug, Y., Kumar, A. et al. Li2O–B2O3–Bi2O3 glasses: gamma-rays and neutrons attenuation study using ParShield/WinXCOM program and Geant4 and Penelope codes. Appl. Phys. A 126, 249 (2020).

Download citation


  • Lithium bismuth borate glass
  • ParShield
  • Geant4
  • Penelope
  • Mass attenuation coefficient
  • Total neutron cross-section