Structural investigations on inorganic Al2O3–ZnO composites

Abstract

The present work deals with the preparation and characterization of Al2O3/ZnO composites under the effect of structural and temperature changes. A sol–gel method of preparing Al2O3/ZnO composites with different concentrations of ZnO and Al2O3 was used. Materials with the extremely high Al2O3 concentration (80 mol%) have been simply prepared by the sol–gel technique. 27Al NMR spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM) examined the structural features of all the samples. 27Al NMR showed a significant improvement in the product composition with the change of the Al2O3 to ZnO molar ratios. The main units that existed in the Al2O3 rich sample (80 mol%) are the structured groups AlO6, AlO5 and AlO4. The main unit in the lower Al2O3 concentration (20 mol%) is only AlO4 coordination. Through adding Al2O3, the crystalline configuration in the pure ZnO matrix is fully transformed into one of the amorphous forms. The amorphous composition of Al2O3/ZnO is retransformed into crystalline forms after calcination. The presence of different Al2O3 coordination such as AlO6, AlO5 and AlO4 is considered as the main cause for mismatching between different structural units that leads to transformation of crystalline into non-crystalline structure.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M. Dehbashi, M. Aliahmad, M.R. Mohammad Shafiee, M. Ghashang, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1301–1306 (2013)

    Article  Google Scholar 

  2. 2.

    L. He, H. Cheng, G. Liang, Y. Yu, F. Zhao, Appl. Catal. A Gen. 452, 88–93 (2013)

    Article  Google Scholar 

  3. 3.

    P. Wei, D. Zhu, S. Huang, W. Zhou, F. Luo, Appl. Surf. Sci. 285, 577–582 (2013)

    ADS  Article  Google Scholar 

  4. 4.

    A. Aslani, A. Bazmandegan-Shamili, S. Barzegar, Phys. B 405, 3585–3589 (2010)

    ADS  Article  Google Scholar 

  5. 5.

    Q. Chen, S. Zheng, S. Yang, W. Li, X. Song, B. Cao, J Sol-Gel Sci Technol 61, 501–508 (2012). https://doi.org/10.1007/s10971-011-2651-0

    Article  Google Scholar 

  6. 6.

    M. Tavoosi, F. Karimzadeh, M.H. Enayati, Mater. Lett. 62, 282–285 (2008)

    Article  Google Scholar 

  7. 7.

    D. Jiang, K. Thomson, Scr. Mater. 56, 959–962 (2007)

    Article  Google Scholar 

  8. 8.

    K.E. Thomson, D. Jiang, Acta Mater. 60, 622–632 (2012)

    ADS  Article  Google Scholar 

  9. 9.

    S.I. Cha, K.T. Kim, Scr. Mater. 53, 793–797 (2005)

    Article  Google Scholar 

  10. 10.

    S. Maensiri, P. Laokul, Mater. Sci. Eng. A 447, 44–50 (2007)

    Article  Google Scholar 

  11. 11.

    V. Trombini, E.M.J.A. Pallone, R. Tomasi, Mater. Sci. Eng. A 501, 26–29 (2009)

    Article  Google Scholar 

  12. 12.

    R.M. Rahimi, H.R. Rezoie, A. Nemati Ceram. Int. 37, 1681–2168 (2011)

    Article  Google Scholar 

  13. 13.

    S.K.C. Pillai, B. Baron, M.J. Pomeroy, J. Eur. Ceram. Soc. 24, 3317–3326 (2004)

    Article  Google Scholar 

  14. 14.

    Y. Sun, W. Xiong, C. Li Trans, Nonferrous. Met. Soc. China 20, 624–631 (2010)

    Article  Google Scholar 

  15. 15.

    L.P. Dail, H. Deng, J. Zang, J. Mater. Sci: Mater. Electron. 19, 727–734 (2008)

    Google Scholar 

  16. 16.

    F. Ruske, A. Pflug, V. Sittinger, Thin Solid Films 14, 4472–4477 (2008)

    ADS  Article  Google Scholar 

  17. 17.

    M. Ranjbar, G. DehghanNoudeh, M.A. Hashemipour, I. Monamadzadeh, J. Artif. Cells Nanomed. Biotechnol. Int. J. 47, 201–209 (2019)

    Article  Google Scholar 

  18. 18.

    P. Puspitasari and Andoko, ISSN 1819–6608 ARPN. J. Eng. Appl. Sci. 11(2):1317–1320 (2016)

  19. 19.

    M. Karpuraranjith, S. Thambidurai, Int. J. Biol. Macromol. 104, 1753–1761 (2017)

    Article  Google Scholar 

  20. 20.

    J.A. Johnson, J.K.R. Weber, A.I. Kolesnikov, S. Schweizer, J. Phys. Condens. Matter. 21(37), 3751031 (2009)

    Article  Google Scholar 

  21. 21.

    G. El-Damrawi, A.K. Hassan, A. Shahboub, Magn. Reson. Solids 20, 18202 (2018)

    Google Scholar 

  22. 22.

    Y. Fujimoto, M. Nakatsuka, J. Non-Cryst. Solids 352, 2254–2258 (2006)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. El Damrawi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Damrawi, G., Salaheldin, H. & Abdelghany, M. Structural investigations on inorganic Al2O3–ZnO composites. Appl. Phys. A 127, 145 (2021). https://doi.org/10.1007/s00339-020-04268-w

Download citation

Keywords

  • Nanocomposite
  • Reinforced ceramics
  • NMR spectroscopy