Work function optimization for enhancement of sensitivity of dual-material (DM), double-gate (DG), junctionless MOSFET-based biosensor


In this work, the impact of gate material work function on the sensitivity of dual-material, double-gate, junctionless MOSFET (\(DMDG-JL-MOSFET\))-based biosensor has been studied. To enhance the sensitivity of the biosensor, optimization of gate work functions has been done through Sentaurus TCAD simulator. With the immobilization of biomolecules in the cavity at different value of work function of gate metal 1 (M1) and gate metal 2 (M2), i.e., WF1 and WF2, enhancement in sensing metrics (change in threshold voltage \(S_{V{\rm th}}\) and \(I_{ON}\)/\(I_{OFF}\) ratio) is observed. The enhancement in sensitivity is profound in source-side gate (M1) work function (WF1) optimization as compared to drain-side gate (M2) work function (WF2) optimization. Sensitivity of 90 mV is observed in source-side gate work function optimization which is \(\sim\) 89% more than the sensitivity of 23 mV which is achieved in drain-side gate work function optimization for a fixed concentration and dielectric constant of biomolecules. It has also been noted that the proposed structure exhibits \(\sim 90\%\) higher sensitivity than the single-material, dual-gate, junctionless MOSFET (\(SMDG-JL-MOSFET\)) biosensor. Results showcase that the optimization of gate metal work functions enhances the sensitivity of the biosensor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    P. Bergveld, The development and application of FET-based biosensors. Biosensors. 2(1), 15–33 (1986)

    Article  Google Scholar 

  2. 2.

    H. Im, X.-J. Huang, B. Gu, Y.-K. Choi, A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2(7), 430–434 (2007)

    ADS  Article  Google Scholar 

  3. 3.

    C.H. Kim, C. Jung, H.G. Park, Y.K. Choi, Novel dielectric modulated field-effect transistor for label-free DNA detection. Biochip J. 2(2), 127–134 (2008)

    Google Scholar 

  4. 4.

    B. Gu, T.J. Park, J.-H. Ahn, X.-J. Huang, S.Y. Lee, Y.-K. Choi, Nanogap field-effect transistor biosensors for electrical detection of avian influenza. Small 5(21), 2407–2412 (2009)

    Article  Google Scholar 

  5. 5.

    H. Wong.:Beyond the conventional MOSFET, Proceeding of 31th European Solid State Device Research Conference (69)5

  6. 6.

    A. Afzalian, N. Akhavan.: Junctionless multigate field-effect transistor, Appl.Phys.Lett. 94(5), 053511 (2009)

    ADS  Article  Google Scholar 

  7. 7.

    J.P. Colinge, C. Lee.: Reduced electric field in junctionless transistors, Appl.Phys.Lett. 94(7), 073510 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    C.-W. Lee, N.D. Akhavan, High-temperature performance of silicon junctionless MOSFETs. IEEE Trans. Electron Devices 57(3), 620–625 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    C. Li, Y. Zhuang, R. Han, Subthreshold behavior models for nanoscale short-channel junctionless cylindrical surrounding-gate MOSFETs. IEEE Trans. Electron Devices. 60(11), 3655–3662 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    T. Wang, L. Lou, C. Lee, A junctionless gate-all-around silicon nanowire FET of high linearity and its potential applications. IEEE Trans. Electron Devices 34(4), 478–480 (2013)

    Article  Google Scholar 

  11. 11.

    E. Buitrago, F. Giorgos, M. Badia, M.B.Y.M. Georgiev, A.M. Ionescu, Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor. Sens. Actuat. B: Chem. 183, 1–10 (2013)

    Article  Google Scholar 

  12. 12.

    S. Ajay, R. Narang, M. Saxena, M. Gupta, Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a bio-sensors. Superlattices Microstruct. 85, 557–572 (2015)

    ADS  Article  Google Scholar 

  13. 13.

    J.M. Choi, J.W. Han, S.J. Choi, Y.K. Choi, Analytical modeling of a nanogap-embedded FET for application as a biosensor. IEEE Trans. Electron Devices 57(12), 3477–3484 (2010)

    ADS  Article  Google Scholar 

  14. 14.

    W. Long, K.K. Chin.:Dual material gate field effect transistor (dmg fet), International Electron Devices Meeting., IEDM Technical Diges

  15. 15.

    Ajay, R. Narang, Modeling of gate underlap junctionless double gate mosfet as bio-sensor. Mater. Sci. Semicond. Process. 71, 240–251 (2017)

    Article  Google Scholar 

  16. 16.

    S. Singh, B. Raja, Analytical modeling of split-gate junction-less transistor for a biosensor application. Sens. Bio-Sens. Res. 18, 31–36 (2018)  

    Article  Google Scholar 

  17. 17.

    M. Curreli, R. Zhang, F.N. Ishikawa, H.-K. Chang, R.J. Cote, C. Zhou, M.E. Thompson, Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Trans. Nanotechnol. 7(6), 651–667 (2008)

    ADS  Article  Google Scholar 

  18. 18.

    A. Syahir, K. Usui, K.-Y. Tomizaki, K. Kajikawa, H. Mihara, Label and label-free detection techniques for protein microarrays. Microarrays 4, 228–244 (2015)

    Article  Google Scholar 

  19. 19.

    Y. Ohno, K. Maehashi, K. Matsumoto, Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 132, 18012–18013 (2010)

    Article  Google Scholar 

  20. 20.

    B. Lakshmi, R. Srinivasan, Performance analysis of dual metal gate work function in junctionless transistors. J. Comput. Theor. Nanosci. 10(6), 1354–1358 (2013)

    Article  Google Scholar 

  21. 21.

    P. Dwivedi, R. Singh, Investigation the impact of the gate workfunction and biases on the sensing metrics of tfet based biosensors. Eng. Res. Express

  22. 22.

    TCAD Sentaurus Device User Manual, Synopsys, CA (2013)

  23. 23.

    M.S. Parihar, D. Ghosh, G.A. Armstrong, P. Razavi, A. Kranti, Bipolar e ects in unipolar junctionless transistors. Appl. Phys. Lett. 101, 093507 (2012)

    ADS  Article  Google Scholar 

  24. 24.

    D.Y. Jang et al., Sublithographic vertical gold nano-gap for labelfree electrical detection of protein ligand binding. J. Vac. Sci. Technol. B 25, 443–447 (2007)

    Article  Google Scholar 

  25. 25.

    S. Kim, J.-H. Ahn, T.J. Park, S.Y. Lee, Y.-K. Choi, A biomolecular detection method based on charge pumping in a nanogap embedded eld-e ect-transistor biosensor, Appl. Phys. Lett. 94(24), 243903 (2009)

    ADS  Article  Google Scholar 

  26. 26.

    K.-W. Lee, S.-J. Choi, J.-H. Ahn, D.-I. Moon, T.J. Park, S.Y. Lee, Y.- K Choi, An underlap eld-e ect transistor for electrical detection of influenza. Appl. Phys. Lett. 96(3), 033703 (2010)

    ADS  Article  Google Scholar 

  27. 27.

    M. S. Lundstrom, Essential physics of carrier transport in nanoscale mosfets. IEEE Trans. Electron. Devices 49, 133–141 (2002)

    ADS  Article  Google Scholar 

  28. 28.

    S. Busse, V. Scheumann, B. Menges, S. Mittler, Sensitivity studies for speciic binding reactions using the biotin/streptavidin system by evanescent optical methods. Biosens. Bioelectron. 17(8), 704–710 (2002)

    Article  Google Scholar 

  29. 29.

    A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delge, J. Lapointe, P. Cheben, B. Lamontagne, Spiral-path high-sensitivity silicon photonic wiremolecular sensor with temperature-independent response. Opt. Lett. 33(6), 596–598 (2008)

    ADS  Article  Google Scholar 

  30. 30.

    S. Kim, D. Baek, J.-Y. Kim, S.-J. Choi, M.-L. Seol, Y.-K. Choi, A transistor-based biosensor for the extraction of physical properties from biomolecules. Appl. Phys. Lett. 101(7), 073703-1–073703-4 (2012)

    ADS  Google Scholar 

  31. 31.

    H. Lou, L. Zhang, Y. Zhu, X. Lin, S. Yang, J. He, M. Chan, A junctionless nanowire transistor with a dual-material gate. IEEE Trans. Electron. Devices 59(7), 1829–1836 (2012)

    ADS  Article  Google Scholar 

  32. 32.

    P. Razavi, A. A. Orouji, Dual material gate oxide stack symmetric double gate MOSFET: improving short channel efects of nanoscale double gate MOSFET. In: Electronics Conference, 2008. BEC 2008. 11th International Biennial Baltic, IEEE, pp. 83–86 (2008)

  33. 33.

    P. Kasturi, M. Saxena, M. Gupta, R.S. Gupta, Dual material double-layer gate stack SON MOSFET: a novel architecture for enhanced analog performance-part I: impact of gate metal workfunction engineering. IEEE Trans. Electron. Devices 55(1), 372–381 (2008).

    ADS  Article  Google Scholar 

  34. 34.

    W. Long, H. Ou, J. Kuo, K.K. Chin, Dual-material gate (dmg) ield efect transistor. IEEE Trans. Electron. Devices 46(5), 865– 870 (1999)

    ADS  Article  Google Scholar 

  35. 35.

    R. K. Baruah, R. P. Paily, A dual-material gate junctionless transistor with high- k spacer for enhanced analog performance. IEEE Trans. Electron. Devices 61(1), 123–128 (2014)

    ADS  Article  Google Scholar 

  36. 36.

    A. Chakraborty, A. Sarkar, Analytical modeling and sensitivity analysis of dielectric-modulated junction-less gate stack surrounding gate MOSFET (JLGS-SRG) for application as biosensor. J. Comput. Electron. 16, 556–567 (2017)

    Article  Google Scholar 

Download references


This work is partially supported by the grant under Faculty Research Scheme (FRS/117/2017-18/ECE) and grant under DST (FIST) (257)/2020-2021/713/ECE at the Department of Electronics Engineering, IIT(ISM), Dhanbad.

Author information



Corresponding author

Correspondence to Monika Kumari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumari, M., Singh, N.K., Sahoo, M. et al. Work function optimization for enhancement of sensitivity of dual-material (DM), double-gate (DG), junctionless MOSFET-based biosensor. Appl. Phys. A 127, 130 (2021).

Download citation


  • Work function
  • Biosensor
  • Sentaurus TCAD
  • Sensitivity