Skip to main content

Advertisement

Log in

Synthesis and characterization of non-molar lithium–magnesium nanoferrite material for its applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Non-stoichiometric ferrite magnetic nanoparticles Mg0.5+xLi1−2xFe2O4 (x = 0, 0.15, 0.35) were prepared using low-cost sol–gel method and annealed at temperature 700 °C. Thermal analysis measurement confirms that there is a decrease in weight with an increase in temperature which becomes thermally stable till 600 °C. The XRD study confirms that prepared nanoparticles are a cubic spinel structure having Fd3m space group. The crystallite size lies in the range of 26.41–31 nm. Lattice parameter was found to increase with decreasing molar ratio of Li ion. The FTIR spectroscopy confirms the spinel nature of ferrite nanomaterial having characteristics absorption peaks at 588 and 435 cm−1. HRTEM and SEM image confirms the cubic spinel structure and porosity in the material. The indirect energy band gap was evaluated for all samples using tauc plot and found to be 2.25, 1.89 and 2.03 eV respectively for x = 0, 0.15 and 0.35. The energy band gap was found function of crystallite size. Strong luminescence was observed in the visible range of 580–610 nm. The non-molar ratio of Li = 0, 0.15 and 0.35 mol leads to a systematic increase in all the magnetic parameters. The magnetization increases from 15.53 to 33.75 emu/g, retentivity from 2.66 to 7.11 emu/g and coercivity increases 116.56–161.37 Gauss, respectively. Prepared nanomaterial possesses pure phase porous crystal with luminescent property in the visible range, energy band gap in the range of 2.03–2.25 eV and uniform increase in the magnetic parameter. Hence, materials may be potential candidate for magneto-optical device, humidity sensor, hydroelectric cell applications and some other realted fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig.11
Fig.12
Fig. 13
Fig.14

Similar content being viewed by others

References

  1. T. Hideaki, Y. Kitano, J. Junichi, Sol. Stat. Chem. 121, 117–128 (1996)

    Google Scholar 

  2. Y. Yaoaq, Y. Chen, M. Tai, D. Wang, Mat. Sc. Eng. B 217(218), 281–285 (1996)

    Google Scholar 

  3. A. Bush, Y. Fatisov, K. Kamentsev, G. Shrinivasan, J. Magn. Magn. Mater. 258(259), 45–47 (2003)

    ADS  Google Scholar 

  4. H. Nien, T. Liang, S. Changchien, J. Magn. Magn. Mater. 304, 204–206 (2006)

    Google Scholar 

  5. S. Licht, B. Wang, S. Ghosh, Science 285, 1039–1042 (1999)

    Google Scholar 

  6. V.K. Sankaranarayanan, O. Parkash, R.P. Pant, M. Islam, J. Magn. Magn. Mater. 252, 7–9 (2002)

    ADS  Google Scholar 

  7. M. Tabuchi, K. Ado, H. Sakaebe, C. Masquelier, H. Kageyema, O. Nakamumo, Solid State. Ionics 79, 220–226 (1995)

    Google Scholar 

  8. H.M. Widatallah, C. Johnson, F.J. Berry, Mater. Sci. 37, 4621–4625 (2002)

    ADS  Google Scholar 

  9. G.M. Argentina, P.D. Baba, IEEE Trans. Microwave Theory Techn 22, 652–658 (1974)

    ADS  Google Scholar 

  10. G.O. White, C.E. Patton, J. Magn. Magn. Mater. 9, 299 (1978)

    ADS  Google Scholar 

  11. R. Lahouli, J. Massoudi, M. Smari, H. Rahmouni, RSC Adv. 9, 19949–19964 (2019)

    ADS  Google Scholar 

  12. C.E. Patton, D.L. Blankenbeckler, C.J. Brower, B.B. Dalton, A.M. Lucero, IEEE Trans. Magn. 17, 2976–2978 (1981)

    ADS  Google Scholar 

  13. C.J. Brower, C.E. Patton, J. Appl. Phys. 53, 2104–2106 (1982)

    ADS  Google Scholar 

  14. P. Kishan, N. Kumar, C. Prakash, Z. H Zaidi, Ferroelectr. Lett. Sect, 18, 91–97 (1994)

  15. H.M. Widatallah, C. Johnson, A.M. Gismelseed, I.A. Al-Omari, S.J. Stewart, S.H. Al-Harthi, S. Thomas, H. Sitepu, J. Phys. D Appl. Phys. 41, 165006 (2008)

    ADS  Google Scholar 

  16. S.S. Bhatu, V.K. Lakhani, A.R. Tanna, N.H. Vasoya, J.U. Buch, P.U. Sharma, U.N. Trivedi, H.H. Joshi, K.B. Modi, Indian J. Pure Appl. Phys. 45, 597–608 (2007)

    Google Scholar 

  17. I. Soibam, S. Phanjoubam, C. Prakash, J. Magn. Magn. Mater. 321, 2779–2782 (2009)

  18. C.E. Patton, C.A. Edmonson, Y.H. Liu, J. Appl. Phys. 53, 2431–2433 (1982)

    ADS  Google Scholar 

  19. M. Rosenberg, P. Deppe, S. Dey, U. Janssen, C. Patton, C. Edmondson, IEEE Trans. Magn. 18, 1616–1618 (1982)

    ADS  Google Scholar 

  20. A.M. Abo El Ata, S.M. Attia, D. ElKony, A.H. Al-Hammadi, J. Magn. Magn. Mater. 295, 28–36 (2005)

    ADS  Google Scholar 

  21. P. Surzhikov, A.M. Pritulov, Yu.F. Ivanov, R.S. Shabardin, R.U. Usmanov, Russ. Phys. J. 44, 420–423 (2001)

    Google Scholar 

  22. S.S. Bellad, S.C. Watawe, A.M. Shaikh, B.K. Chougule, Bull. Mater. Sci. 23, 83–85 (2000)

    Google Scholar 

  23. R. Laishram, C. Prakash, J. Magn. Magn. Mater. 305, 35–39 (2006)

    ADS  Google Scholar 

  24. C. Sun, K. Sun, Solid State Commun. 141, 258–261 (2007)

    ADS  Google Scholar 

  25. P. Hajasharif, K. Ramesh, S. Sivakumar, P. Sivagurunathan, Int. J. Innovative Technol. Exploring Eng. 9, 33–37 (2019)

    Google Scholar 

  26. Z.A. Gilani, M.S. Shifa, A.D. Chandio, M.N. Usmani, H.M.N. UlHuda, K. Asghar, S. Aslam, M. Khalid, A. Perveen, J. Ur Rehman, M. Mustaqeem, M.A. Khan, Dig. J. Nanomater. Bios. 13, 809–816 (2018)

    Google Scholar 

  27. G. Aravind, M. Raghasudha, D. Ravinder, J. Magn. Magn. Mater. 378, 278–284 (2015)

    ADS  Google Scholar 

  28. Xu. Ping, X. Han, M. Wang, J. Phys. Chem. C 111, 5866–5870 (2007)

    Google Scholar 

  29. E.A. Ebtesam, K.A.A. Seham, A.A. Asmaa, J. Mater. Sci. Mater. Electron. 29, 1489–1496 (2018)

    Google Scholar 

  30. A. Pradeep, G. Chandrasekaran, Mater. Lett. 60, 371–374 (2006)

    Google Scholar 

  31. I. Fid, S. Ahmad, M. Aman, G. Kanwal, I. Murtaza, A.I. Ahmad, M. Ishfaq, J. Ovon. Res. 11, 1–10 (2015)

    Google Scholar 

  32. A. ArifKhan, M. Javed, A. RaufKhan, Y. Iqbal, A. Majeeb, S. ZahidHussain, S.K. Durani, Mater. Sci. Portland 35(1), 58–65 (2017)

    ADS  Google Scholar 

  33. An Investigation of TiO2-ZnFe2O4 Nanocomposites for Visible Light Photo catalysis by Jeremy Wade, A thesis submitted to Department of Electrical Engineering; College of Engineering, University of South Florida, March 24, 2005.

  34. M. Prasad Ghosh, S. Sharma, H.K. Satyapal, K. Tanbir, R.K. Singh, S. Mukherje, Mater. Chem. Phys. 241, 122383 (2020)

    Google Scholar 

  35. A.I. Ahmed, M.A. Siddig, A.A. Mirghni, M.I. Omer, A.A. Elbadawi, Adv. Nanoparticles 4, 45–52 (2015)

    Google Scholar 

  36. K.F. Lin, H.M. Cheng, H.C. Hsu, L.I.J. Lin, W.F. Hsieh, Chem. Phys. Lett. 409, 208–211 (2005)

    ADS  Google Scholar 

  37. O.S. Polezhaeva, N.V. Yaroshinskaya, V.K. Ivanov, Russ. J. Inorg. Chem. 52, 1184–1188 (2007)

    Google Scholar 

  38. N. Kumar, R.K. Singh, H.K. Satyapal, J. Mater. Sci. Electron. 31, 9231–9241 (2020)

    Google Scholar 

  39. S. Prasad, N.S. Gajbhiye, J. Alloys Compd. 265, 87–92 (1998)

    Google Scholar 

  40. E. Ateia, M.A. Ahmed, R.M. Ghouniem, Solid State Sci. 31, 1–8 (2014)

    Google Scholar 

  41. S.K. Pradhan, S. Sain, H. Dutta, ISRN Ceram. (2011). https://doi.org/10.5402/2011/194575

    Article  Google Scholar 

  42. Y. Zhou, J.H. Morais-Cabral, A. Kaufman, R. MacKinnon, Nature 414, 43–48 (2001)

    ADS  Google Scholar 

  43. M. Asif Iqbal, M.U. Islam, I. Ali, M. Azh Khan, S.M. Ramay, M. HassanKhan, M.K. Mehmood, J. Alloys Compd. 692, 322–331 (2016)

    Google Scholar 

  44. A.B. Abou Hammad, A.G. Darwish, A.M. El Nahrawy, Appl. Phys. A 126, 504 (2020)

    ADS  Google Scholar 

  45. A. Dahshan, A.B.A. Hammad, K.A. Aly et al., Appl. Phys. A 126, 19 (2020)

    ADS  Google Scholar 

  46. A.B. Abou Hammad, B.A. Hemdan, A.M. El Nahrawy, J. Environ. Manage. 270, 110816 (2020)

    Google Scholar 

  47. A. B. Abou Hammad, A. M. Amir Elzwawy, M. M. Mansour et al. New. J. Chem. 44, 7941–7953 (2020)

Download references

Acknowledgement

Authors are thankful to TEQUIP-III of Aryabhatta Knowledge University, Patna for financial support under Collaborative Research Scheme (Ref-005/Exam/1060/AKU/2019/4455). Authors are also grateful to Department. of Education, Govt. of Bihar and Aryabhatta Knowledge University, Patna which has been very supportive in establishment and functioning of the Aryabhatta Center for Nanoscience and Nanotechnology, Aryabhatta Knowledge University, Patna, Bihar, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kr. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.K., Kumar, N. & Rangappa, D. Synthesis and characterization of non-molar lithium–magnesium nanoferrite material for its applications. Appl. Phys. A 127, 183 (2021). https://doi.org/10.1007/s00339-020-04233-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04233-7

Keywords

Navigation