Tin-oxide nanoparticles doping impact in the polycrystalline superconducting \(\mathrm{Y}_3\mathrm{Ba}_5\mathrm{Cu}_8\mathrm{O}_{18\pm \delta }\) and \(\mathrm{Y}_1\mathrm{Ba}_2\mathrm{Cu}_3\mathrm{O}_{7-\delta }\) composites


The well-known yttrium founded polycrystalline superconductors named cuprates with high critical temperature (\(T_\mathrm{C}\)) and arrangement of pure \(Y_3\mathrm{Ba}_5\mathrm{Cu}_8\mathrm{O}_{18\pm \delta }\) (shortened-Y358) and \(Y_1\mathrm{Ba}_2\mathrm{Cu}_3\mathrm{O}_{7-\delta }\) (shortened-Y123) accompany with various (0.00, 0.40, and 0.50 wt%) nanoparticles Tin-doped (SnO2) composites were manufactured by solid-state response method. The X-ray diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) apparatuses were used to analyse the micro-features and morphological structures of the synthetic mixtures. The XRD associated with the pure Y358 compares to the Y123 specimen shown alike structures for both samples with approximately three times longer lattice parameter c. The SEM images related to the pure compounds exhibited different intergrowth crystals from the doped ones. The EDX diagrams display all the compositional components in appropriate quantities. Electrical resistivity \(\rho (T)\) measurements were performed to evaluate not only superconducting transition temperatures \((T_{\text {c zero}})\), (\(T_\mathrm{C}^\mathrm{Peak}\)) and (\(T_{\text {c onset}}\)) but also critical parameters such as critical magnetic field \(B_{\mathrm{c}2}(0)\) and critical current density \(J_\mathrm{c}(0)\) in pure and SnO2 added YBCO specimens. The data correlated to Y123 and Y358 compounds shown that rising SnO2 nanoparticle insertion into these samples triggered the enhancement of critical parameters which describes better flux pinning. Comparing these data regarding application and superconducting properties point of view confirmed that the sample Y358 with 0.50 wt% nano-sized (SnO2) inclusion is superior among them.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    M.K. Wu, J.R. Ashburn, C. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y. Wang, a Chu, Phys. Rev. Lett. 58(9), 908 (1987)

    ADS  Article  Google Scholar 

  2. 2.

    P. Hor, L. Gao, R. Meng, Z. Huang, Y. Wang, K. Forster, J. Vassilious, C. Chu, M. Wu, J. Ashburn et al., Phys. Rev. Lett. 58(9), 911 (1987)

    ADS  Article  Google Scholar 

  3. 3.

    A. Aliabadi, Y. Akhavan Farshchi, M. Akhavan, Phys. C Supercond. Appl. 469(22), 2012 (2009). https://doi.org/10.1016/j.physc.2009.09.003. https://linkinghub.elsevier.com/retrieve/pii/S0921453409005346

  4. 4.

    A. Ekicibil, S.K. Cetin, A.O. Ayaş, A. Coşkun, T. Fırat, K. Kıymac, Solid State Sci. 13(11), 1954 (2011)

    ADS  Article  Google Scholar 

  5. 5.

    U. Topal, M. Akdogan, J. Supercond. Nov. Magn. 25(2), 239 (2012). https://doi.org/10.1007/s10948-011-1285-3

    Article  Google Scholar 

  6. 6.

    P. Udomsamuthirun, T. Kruaehong, T. Nilkamjon, S. Ratreng, J. Supercond. Nov. Magn. 23(7), 1377 (2010). https://doi.org/10.1007/s10948-010-0786-9

    Article  Google Scholar 

  7. 7.

    Y. Slimani, E. Hannachi, M.B. Salem, A. Hamrita, M.B. Salem, F.B. Azzouz, J. Supercond. Novel Magn. 28(10), 3001 (2015). https://doi.org/10.1007/s10948-015-3144-0

    Article  Google Scholar 

  8. 8.

    G. Shams, M. Ranjbar, Braz. J. Phys. (2019). https://doi.org/10.1007/s13538-019-00701-5

    Article  Google Scholar 

  9. 9.

    Y. Slimani, E. Hannachi, A. Ekicibil, M. Almessiere, F.B. Azzouz, J. Alloys Compd. 781, 664 (2019). https://doi.org/10.1016/j.jallcom.2018.12.062

    Article  Google Scholar 

  10. 10.

    R. Teranishi, Y. Miyanaga, K. Yamada, N. Mori, M. Mukaida, M. Miura, M. Yoshizumi, T. Izumi, M. Namba, S. Awaji, K. Watanabe, Phys. C Supercond. Appl. 470(20), 1246 (2010). https://doi.org/10.1016/j.physc.2010.05.085. https://www.sciencedirect.com/science/article/abs/pii/S0921453410003412. https://linkinghub.elsevier.com/retrieve/pii/S0921453410003412

  11. 11.

    S. Choi, G. Shin, S. Yoo, Phys. C Supercond. 485, 154 (2013). https://doi.org/10.1016/j.physc.2012.12.007

    ADS  Article  Google Scholar 

  12. 12.

    Y. Miyanaga, R. Teranishi, K. Yamada, N. Mori, M. Mukaida, T. Kiss, M. Inoue, K. Nakaoka, M. Yoshizumi, T. Izumi, Y. Shiohara, M. Nanba, S. Awaji, K. Watanabe, Phys. C Supercond. 469(15–20), 1418 (2009). https://doi.org/10.1016/j.physc.2009.05.049. https://www.sciencedirect.com/science/article/abs/pii/092145340900313X. https://linkinghub.elsevier.com/retrieve/pii/S0921453409005346

  13. 13.

    N. Mohd Yusuf, M. Awang Kechik, H. Baqiah, C. Soo Kien, L. Kean Pah, A. Shaari, W. Wan Jusoh, S. Abd Sukor, M. Mousa Dihom, Z. Talib et al., Materials 12(1), 92 (2019). https://doi.org/10.3390/ma12010092

    ADS  Article  Google Scholar 

  14. 14.

    P. Prayoonphokkharat, P. Amonpattaratkit, A. Watcharapasorn, Appl. Phys. A 126(2), 140 (2020)

    ADS  Article  Google Scholar 

  15. 15.

    L. Aslamazov, A. Larkin, 30 Years of the Landau Institute-Selected Papers (World Scientific, Singapore, 1996), pp. 23–28. https://doi.org/10.1142/9789814317344-0004

    Google Scholar 

  16. 16.

    A.A. Yusuf, A. Yahya, N.A. Khan, F.M. Salleh, E. Marsom, N. Huda, Phys. C Supercond. 471(11–12), 363 (2011). https://doi.org/10.1016/j.physc.2011.03.007

    ADS  Article  Google Scholar 

  17. 17.

    N.A. Khan, N. Hassan, M. Irfan, T. Firdous, Phys. B Condens. Matter 405(6), 1541 (2010). https://doi.org/10.1016/j.physb.2009.12.036

    ADS  Article  Google Scholar 

  18. 18.

    N. Ghaedsharafi, G. Shams, Z. Soltani, Phys. Solid State 62(11), 2154 (2020). https://doi.org/10.1134/S1063783420110141

    ADS  Article  Google Scholar 

  19. 19.

    M. Francois, A. Junod, K. Yvon, A. Hewat, J. Capponi, P. Strobel, M. Marezio, P. Fischer, Solid State Commun. 66(10), 1117 (1988). https://doi.org/10.1016/0038-1098(88)90335-3

    ADS  Article  Google Scholar 

  20. 20.

    A. Ramli, A.H. Shaari, H. Baqiah, C.S. Kean, M.M.A. Kechik, Z.A. Talib, J. Rare Earths 34(9), 895 (2016). https://doi.org/10.1016/S1002-0721(16)60112-6

    Article  Google Scholar 

  21. 21.

    A. Bhargava, I.D. Mackinnon, T. Yamashita, D. Page, Phys. C Supercond. 241(1–2), 53 (1995). https://doi.org/10.1016/0921-4534(94)00638-5

    ADS  Article  Google Scholar 

  22. 22.

    M. Farbod, M.R. Batvandi, Phys. C Supercond. 471(3–4), 112 (2011). https://doi.org/10.1016/j.physc.2010.11.005

    ADS  Article  Google Scholar 

  23. 23.

    U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6(9), 534 (2011). https://doi.org/10.1038/nnano.2011.145

    ADS  Article  Google Scholar 

  24. 24.

    R. Teranishi, Y. Miyanaga, K. Yamada, N. Mori, M. Mukaida, M. Inoue, T. Kiss, M. Miura, M. Yoshizumi, T. Izumi, M. Namba, S. Awaji, K. Watanabe, J. Phys. Conf. Ser. (2010). https://doi.org/10.1088/1742-6596/234/2/022039

    Article  Google Scholar 

  25. 25.

    Y. Slimani, E. Hannachi, M. Ben Salem, A. Hamrita, A. Varilci, W. Dachraoui, M. Ben Salem, F. BenAzzouz, Phys. B Condens. Matter 450, 7 (2014). https://doi.org/10.1016/J.PHYSB.2014.06.003. https://www.sciencedirect.com/science/article/abs/pii/S0921452614004700

  26. 26.

    A. Kulpa, A. Chaklader, N. Osborne, G. Roemer, B. Sullivan, D. Williams, Solid State Commun. 71(4), 265 (1989). https://doi.org/10.1016/0038-1098(89)91011-9. https://www.sciencedirect.com/science/article/abs/pii/0038109889910119

  27. 27.

    A.H. Salama, M. El-Hofy, Y.S. Rammah, M. Elkhatib, Adv. Nat. Sci. Nanosci. Nanotechnol. 6(4), 045013 (2015). https://doi.org/10.1088/2043-6262/6/4/045013. https://stacks.iop.org/2043-6262/6/i=4/a=045013?key=crossref.b088ee71217b26911a03925fa8396661

  28. 28.

    P. Benzi, E. Bottizzo, N. Rizzi, J. Cryst. Growth 269(2–4), 625 (2004)

    ADS  Article  Google Scholar 

  29. 29.

    N. Strickland, N. Long, E. Talantsev, P. Hoefakker, J. Xia, M. Rupich, T. Kodenkandath, W. Zhang, X. Li, Y. Huang, Phys. C Supercond. 468(3), 183 (2008). https://doi.org/10.1016/j.physc.2007.11.013

    ADS  Article  Google Scholar 

  30. 30.

    M. Yusuf, N. Nabilah, M.M. Awang Kechik, H. Baqiah, C. Soo Kien, L. Kean Pah, A.H. Shaari, W.N.W. Wan Jusoh, A. Sukor, S. Izzati et al., Materials 12(1), 92 (2019). https://doi.org/10.3390/ma12010092

    Article  Google Scholar 

  31. 31.

    M. Takahashi, S. Ohkido, K. Wakita, Superconductor (2010). https://doi.org/10.5772/10127

    Article  Google Scholar 

  32. 32.

    E. Yanmaz, S. Balci, T. Küçükömeroğlu, Mater. Lett. 54(2–3), 191 (2002)

    Article  Google Scholar 

  33. 33.

    M. Trunec, Ceram. Silik. 52, 165 (2008)

    Google Scholar 

  34. 34.

    S. Wimbush, J. Durrell, C. Tsai, H. Wang, Q. Jia, M. Blamire, J. MacManus-Driscoll, Supercond. Sci. Technol. 23(4), 045019 (2010). https://doi.org/10.1088/0953-2048/23/4/045019

    ADS  Article  Google Scholar 

  35. 35.

    M.M. Dihom, A.H. Shaari, H. Baqiah, N.M. Al-Hada, C.S. Kien, R.S. Azis, M.M.A. Kechik, Z.A. Talib, R. Abd-Shukor, Results Phys. 7, 407 (2017). https://doi.org/10.1016/j.rinp.2016.11.067

    ADS  Article  Google Scholar 

  36. 36.

    P. Vanderbemden, A. Bradley, R. Doyle, W. Lo, D. Astill, D. Cardwell, A. Campbell, Phys. C Supercond. 302(4), 257 (1998). https://doi.org/10.1016/S0921-4534(98)00238-X

    ADS  Article  Google Scholar 

  37. 37.

    G. Shams, J. Cochrane, G. Russell, Phys. C Supercond. 363(4), 243 (2001). https://doi.org/10.1016/S0921-4534(01)00938-8

    ADS  Article  Google Scholar 

  38. 38.

    R.D. Shannon, Acta Crystallogr. Sect. A 32(5), 751 (1976). https://doi.org/10.1107/S0567739476001551. http://scripts.iucr.org/cgi-bin/paper?S05677394760015513

Download references


The authors are grateful to Mr. Fatemi, for his help during the preparation of the samples, and also Mr. Nowroozi from Islamic Azad University-Shiraz branch and Mr. Mahmoodinezhad from the Brandenburg University of Technology, Germany, for their help and valuable comments.

Author information



Corresponding author

Correspondence to Zahra Soltani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghaedsharafi, N., Soltani, Z. & Shams, G. Tin-oxide nanoparticles doping impact in the polycrystalline superconducting \(\mathrm{Y}_3\mathrm{Ba}_5\mathrm{Cu}_8\mathrm{O}_{18\pm \delta }\) and \(\mathrm{Y}_1\mathrm{Ba}_2\mathrm{Cu}_3\mathrm{O}_{7-\delta }\) composites. Appl. Phys. A 127, 115 (2021). https://doi.org/10.1007/s00339-020-04222-w

Download citation


  • Superconducting parameters
  • SnO2 nanoparticle
  • Y358
  • Y123