Frequency coding all-dielectric metasurface for flexible control of electromagnetic radiation

Abstract

In this paper, a frequency coding all-dielectric metasurface is proposed, which are achieved by simultaneously encoding dielectric unit cells with phase and frequency phase sensitivity information. The frequency phase sensitivity refers to the derivative of phase over working frequency band, which can be used to shape the phase distribution varying as desired by changing the frequency. A variety of tunable, high efficiency and versatile electromagnetic (EM) energy radiations can be realized in a dielectric coding metasurface without changing the coding distribution map and introducing any active devices. As proofs of concept, it has been demonstrated theoretically and numerically that the distinct functionalities are accomplished for the normal incidences of plane EM waves, including frequency controls of multibeam generation, anomalous deflection, vortex beam generation, and diffuse scattering. This work may be utilized in many application scenarios, such as 5G wireless communications and high quality of holograms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    B. Fang, Z.G. Yan, J. Fan, C.K. Qi, H.Y. Gan, Y.W. He, C.X. Li, Z. Hong, X.F. Jing, Highly efficient beam control of transmitted terahertz wave based on all dielectric encoding metasurface. Opt. Commun. 458, 124720 (2020)

    Article  Google Scholar 

  2. 2.

    H. Ahmed, A.A. Rahim, H. Maab, M.M. Ali, N. Mahmood, S. Naureen, Phase engineering with all-dielectric metasurfaces for focused-optical-vortex (fov) beams with high cross-polarization efficiency. Opical. Mater. Express. 10(2), 434 (2020)

    ADS  Article  Google Scholar 

  3. 3.

    Q. Zhang, C. Liu, X. Wan, L. Zhang, S. Liu, Y. Yang, T.J. Cui, Machine-learning designs of anisotropic digital coding metasurfaces. Adv. Theory Simul. 2(2), 1800132 (2019)

    Article  Google Scholar 

  4. 4.

    Y.H. Guo, J. Yan, M.B. Pu, X. Li, X.L. Ma, Z.Y. Zhao, X.G. Luo, Ultra-wideband manipulation of electromagnetic waves by bilayer scattering engineered gradient metasurface. RSC Adv. 8(24), 13061 (2018)

    ADS  Article  Google Scholar 

  5. 5.

    H.R. Ren, G. Briere, X.Y. Fang, P.N. Ni, R. Sawant, S. Heron, S. Chenot, S. Vezian, B. Damilano, V. Brandli, S.A. Maier, P. Genevet, Metasurface orbital angular momentum holography. Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  6. 6.

    D.D. Wen, F.Y. Yue, M. Ardron, X.Z. Chen, Multifunctional metasurface lens for imaging and Fourier transform. Sci. Rep. 6, 27628 (2016)

    ADS  Article  Google Scholar 

  7. 7.

    Z.Y. Guo, L. Zhu, F. Shen, H.P. Zhou, R.K. Gao, Dielectric metasurface based high-efficiency polarization splitters. RSC Adv. 7(16), 9872 (2017)

    ADS  Article  Google Scholar 

  8. 8.

    X.B. Yin, Z.L. Ye, J. Rho, Y. Wang, X. Zhang, Photonic spin Hall effect at metasurfaces. Sci. 339(6126), 1405 (2013)

    ADS  Article  Google Scholar 

  9. 9.

    M.L. Ma, Z. Li, W.W. Liu, C.C. Tang, Z.C. Li, H. Cheng, J.J. Li, S.Q. Chen, J.G. Tian, Optical information multiplexing with nonlinear coding metasurfaces. Laser Photonics Rev. 13(7), 1900045.1 (2019)

    Article  Google Scholar 

  10. 10.

    Q. Wang, X.G. Zhang, H.W. Tian, W.X. Jiang, D. Bao, H.L. Jiang, Z.J. Luo, L.T. Wu, T.J. Cui, Millimeter-wave digital coding metasurfaces based on nematic liquid crystals. Adv. Theory Simul. 2(12), 1900141 (2019)

    Article  Google Scholar 

  11. 11.

    L.L. Cong, X.Y. Cao, H.H. Yang, J. Gao, T. Song, Coding anisotropic metasurface with integrated broadband tunable radiation and low-scattering performance. Nanoscale. Res. Lett. 14(1), 113 (2019)

    ADS  Article  Google Scholar 

  12. 12.

    L.H. Gao, Q. Cheng, J. Yang, S.J. Ma, J. Zhao, S. Liu, H.B. Chen, Q. He, W.X. Jiang, H.F. Ma, Q.Y. Wen, L.J. Liang, B.B. Jin, W.W. Liu, L. Zhou, J.Q. Yao, P.H. Wu, T.J. Cui, Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light Sci. Appl. 4(9), e324 (2015)

    Article  Google Scholar 

  13. 13.

    L.J. Liang, M.G. Wei, X. Yan, D.Q. Wei, D.C. Liang, J.G. Han, X. Ding, G.Y. Zhang, J.Q. Yao, Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies. Sci. Rep. 6(1), 39252 (2016)

    ADS  Article  Google Scholar 

  14. 14.

    C. Ji, J.K. Song, C. Huang, X.Y. Wu, X.G. Luo, Dual-band vortex beam generation with different OAM modes using single-layer metasurface. Opt. Express. 27(1), 34 (2019)

    ADS  Article  Google Scholar 

  15. 15.

    H. Wang, Y.F. Li, Y.J. Han, Y. Fan, S. Sui, H.Y. Chen, J.F. Wang, Q. Cheng, T.J. Cui, S.B. Qu, Vortex beam generated by circular-polarized metasurface reflector antenna. J. Phys. D. 52(25), 255306 (2019)

    ADS  Article  Google Scholar 

  16. 16.

    J.Q. Han, L. Li, H. Yi, Y. Shi, 1-bit digital orbital angular momentum vortex beam generator based on a coding reflective Metasurface. Opt. Mater. Express. 8(11), 3470 (2018)

    ADS  Article  Google Scholar 

  17. 17.

    S.H. Li, J.S. Li, J.Z. Sun, Terahertz wave front manipulation based on Pancharatnam-Berry coding metasurface. Opt. Mater. Express. 9(3), 1118 (2019)

    MathSciNet  Article  Google Scholar 

  18. 18.

    H.B. Jing, Q. Ma, G.D. Bai, T.J. Cui, Anomalously perfect reflections based on 3-bit coding metasurfaces. Adv. Opt. Mater. 7(9), 1801742 (2019)

    Article  Google Scholar 

  19. 19.

    S. Liu, A. Noor, L.L. Du, L. Zhang, Q. Xu, K. Luan, T.Q. Wang, Z. Tian, W.X. Tang, J.G. Han, W.L. Zhang, X.Y. Zhou, Q. Cheng, T.J. Cui, Anomalous refraction and nondiffractive Bessel-beam generation of Terahertz waves through transmission-type coding metasurfaces. ACS Photonics. 3(10), 1968 (2016)

    Article  Google Scholar 

  20. 20.

    Y. Wang, C.S. Guan, X.M. Ding, K. Zhang, B. Ratni, S.N. Burokur, X.M. Gu, Q. Wu, Multi-focus hologram utilizing Pancharatnam-Berry phase elements based metamirror. Opt. Lett. 44(9), 2189 (2019)

    ADS  Article  Google Scholar 

  21. 21.

    D.M. Lin, A.L. Holsteen, E. Maguid, P.Y. Fan, P.G. Kik, E. Hasman, M.L. Brongersma, Polarization-independent metasurface lens employing the Pancharatnam-Berry phase. Opt. Express. 26(19), 24835 (2018)

    ADS  Article  Google Scholar 

  22. 22.

    J.Y. Dai, W.K. Tang, J. Zhao, X. Li, Q. Cheng, J.C. Ke, M.Z. Chen, S. Jin, T.J. Cui, Wireless communications through a simplified architecture based on time-tomain digital coding metasurface. Adv. Mater. Technol. 4(7),1900044 (2019)

    Article  Google Scholar 

  23. 23.

    P. Gutruf, C.J. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, C. Fumeaux, Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS Nano 10(1), 133 (2016)

    Article  Google Scholar 

  24. 24.

    H.H. Yang, X.Y. Cao, F. Yang, J. Gao, S.H. Xu, M.K. Li, X.B. Chen, Y. Zhao, Y.J. Zheng, S.J. Li, A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep. 6, 35692 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    X.G. Zhang, W.X. Tang, W.X. Jiang, G.D. Bai, J. Tang, L. Bai, C.W. Qiu, T.J. Cui, Light-controllable digital coding metasurfaces. Adv. Sci. 5(11), 1801028 (2018)

    Article  Google Scholar 

  26. 26.

    L.Q. Cong, P. Pitchappa, C. Lee, R. Singh, Active phase transition via loss engineering in a Terahertz MEMS metamaterial. Adv Mater. 29(26), 1700733 (2017)

    Article  Google Scholar 

  27. 27.

    S.E. Hosseininejad, K. Rouhi, M. Neshat, R. Faraji-Dana, A. Cabellos-Aparicio, S. Abadal, E. Alarcón, Reprogrammable graphene-based metasurface mirror with adaptive focal point for THz imaging. Sci. Rep. 9(1), 2868 (2019)

    ADS  Article  Google Scholar 

  28. 28.

    Q. Zhao, J. Zhou, F.L. Zhang, D. Lippens, Mie resonance-based dielectric metamaterials. Mater. Today. 12(12), 60 (2009)

    Article  Google Scholar 

  29. 29.

    Y. Wang, D. Zhu, Z. Cui, L. Yue, X. Zhang, L. Hou, K. Zhang, H. Hu. Properties and sensing performance of all-dielectric metasurface THz absorbers. IEEE Trans. THz. Sci. Technol. 10(6), 599 (2020)

    Article  Google Scholar 

  30. 30.

    M.K.T. Alnuaimi, Y.J. He, W. Hong, Design of inhomogeneous all-dielectric electromagnetic-wave diffusive reflectarray metasurface. IEEE Antenn. Wirel. PR. 18(4), 732 (2019)

    Article  Google Scholar 

  31. 31.

    L.D. Shao, M.L. Premaratne, W.R. Zhu, Dual-functional coding metasurfaces made of anisotropic all-dielectric resonators. IEEE Access. 7, 45716 (2019)

    Article  Google Scholar 

  32. 32.

    L. Zhu, X. Zhao, F.J. Miao, B.K. Ghosh, L. Dong, B.R. Tao, F.Y. Meng, W.N. Li, Dual-band polarization convertor based on electromagnetically induced transparency (EIT) effect in all-dielectric metamaterial. Opt. Express. 27(9), 12163 (2019)

    ADS  Article  Google Scholar 

  33. 33.

    J.G. Wang, Z.K. Shao, Y.H. Wen, X.D. Qiu, Y.J. Chen, Y.F. Zhang, S.Y. Yu, L.X. Chen, All-dielectric metasurface grating for on-chip multi-channel orbital angular momentum generation and detection. Opt. Express. 27(13), 18794 (2019)

    ADS  Article  Google Scholar 

  34. 34.

    L. Zhu, X. Zhao, L. Dong, J. Guo, X.J. He, Z.M. Yao, Polarization-independent and angle-insensitive electromagnetically induced transparent (EIT) metamaterial based on bi-air-hole dielectric resonators. RSC Adv. 8(48), 27342 (2018)

    ADS  Article  Google Scholar 

  35. 35.

    Z.H. Zhang, T. Li, X.F. Jiao, G.F. Song, Y. Xu, High-Efficiency all-dielectric metasurfaces for the generation and detection of focused optical vortex for the ultraviolet domain. Appl. Sci. 10(16), 5716 (2020)

    Article  Google Scholar 

  36. 36.

    Y. Jing, Y.F. Li, J.Q. Zhang, J.F. Wang, M.C. Feng, T.S. Qiu, H. Wang, Y.J. Han, H. Ma, S.B. Qu, Achieving circular-to-linear polarization conversion and beam deflection simultaneously using anisotropic coding metasurfaces. Sci. Rep. 9(1), 12264 (2019)

    ADS  Article  Google Scholar 

  37. 37.

    J.S. Li, Z.J. Zhao, J.Q. Yao, Terahertz wave manipulation based on multi-bit coding artificial electromagnetic surfaces. J. Phys. D Appl. Phys. 51(18), 1 (2018)

    Google Scholar 

  38. 38.

    H.T. Wu, S. Liu, X. Wan, L. Zhang, D. Wang, L.L. Li, T.J. Cui, Controlling energy radiations of electromagnetic waves via frequency coding metamaterials. Adv. Sci. 4(9), 1700098 (2017)

    Article  Google Scholar 

  39. 39.

    H.T. Wu, D. Wang, X.J. Fu, S. Liu, L. Zhang, G.D. Bai, C. Zhang, W.X. Jiang, H.L. Jiang, R.Y. Wu, J.W. Wu, T.J. Cui, Space-frequency-domain gradient metamaterials. Adv. Opt. Mater. 6(23), 1801086 (2018)

    Article  Google Scholar 

  40. 40.

    N.F. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Sci. 334(6054), 333 (2011)

    ADS  Article  Google Scholar 

  41. 41.

    G.D. Bai, Q. Ma, S. Iqbal, L. Bao, H.B. Jing, L. Zhang, H.T. Wu, R.Y. Wu, H.C. Zhang, C. Yang, T.J. Cui, Multitasking shared aperture enabled with multiband digital coding metasurface. Adv. Opt. Mater. 6(21), 1800657 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the China Postdoctoral Science Special Foundation (2018T110274), China Postdoctoral Science Foundation (CPSF) (2017M611357), Postdoctoral Science Foundation of Heilongjiang Province of China (LBH-Z17045), Young Creative Talents Training Plan of General Universities of Heilongjiang Province of China (UNPYSCT-2017152), Technology Bureau of Qiqihar City of Heilongjiang Province of China (GYGG-201905, GYGG-201511), Special project of intelligent machine tool research institute of basic scientific research operating expenses of Heilongjiang province universities of China (135409610), National Natural Science Foundation of China (NSFC) (61501275), Science Foundation Project of Heilongjiang Province of China (QC2015073), Higher Education Teaching Reform Project of Heilongjiang Province of China (SJGY20190726), Industry-University Cooperative Education Project of the Ministry of Education (201902076029), and Qiqihar University Degree and Graduate education and Teaching reform research project (JGXM_QUG_2019019).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lei Zhu or Chun Hui Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Li, T.C., Huang, J.H. et al. Frequency coding all-dielectric metasurface for flexible control of electromagnetic radiation. Appl. Phys. A 127, 131 (2021). https://doi.org/10.1007/s00339-020-04220-y

Download citation

Keywords

  • All-dielectric
  • Frequency coding metasurface
  • High efficiency
  • Tunability
  • Electromagnetic wave control