Impact of hydrogenation on the structural, dielectric and magnetic properties of La0.5Ca0.5MnO3


Impact of hydrogenation on the structural, dielectric and magnetic properties of half-doped La0.5Ca0.5MnO3 manganate have been investigated. Polycrystalline sample of La0.5Ca0.5MnO3 was prepared through solid state reaction at ~ 1300 °C. Subsequently, the prepared sample was annealed at 600 °C for 6 h in a continuous flow of hydrogen gas in a tubular reduction furnace. Single-phase orthorhombic structure of the hydrogenated La0.5Ca0.5MnO3 in the space group Pnma was confirmed by Rietveld refinement of PXRD and FTIR analysis. SEM micrographs revealed well resolved grains of ~ 2 μm in a good crystalline sample. Hydrogenated La0.5Ca0.5MnO3 showed a sharp optical absorption peak in the UV range with a bandgap energy of 4.96 eV. Hydrogenation of La0.5Ca0.5MnO3 leads to significant reduction in the magnitude of dielectric constant and tangent loss at room temperature. Paramagnetic character of La0.5Ca0.5MnO3 at 300 K is retained upon the hydrogenation but the low temperature magnetic properties get modified dramatically. Temperature and field dependent magnetization measurements showed that hydrogenated La0.5Ca0.5MnO3 undergoes paramagnetic to antiferromagnetic transition at TN = ~ 110 K and in a disordered magnetic phase below 50 K. Systematic enhancements in the magnitude of saturation magnetization (Ms), coercivity (Hc), remanence (Mr) and squareness ratio at 50 K and 20 K indicate for the coexistence of antiferromagnetic and weak ferromagnetic order due to competitive magnetic exchange interactions between Mn3+ and Mn4+ ions. This study shows that hydrogenation plays key role in the modification of dielectric and magnetic properties of La0.5Ca0.5MnO3.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 7
Fig. 8
Fig. 9

Data availability

Experimental data can be shared on genuine request to the corresponding author.


  1. 1.

    S. Begum, Y. Ono, Y. Tomioka, Y. Tokura, T. Kajitani, Appl. Phys. A 74, S625–S627 (2002)

    Article  ADS  Google Scholar 

  2. 2.

    J. Ma, M. Theingi, H. Zhang, Q. Chen, X. Liu, Appl. Phys. A 114, 1075–1078 (2014)

    Article  ADS  Google Scholar 

  3. 3.

    J.M. Gonzalez-Calbet, E. Herrero, N. Rangavittal, J.M. Alonso, J.L. Martinez, M. Vallet-Regi, J. Solid State Chem. 148, 158–168 (1999)

    Article  ADS  Google Scholar 

  4. 4.

    N.S. Arul, V.D. Nithya (Eds.) Revolution of Perovskite Synthesis, Properties and Applications, Springer Nature Singapore Pte Ltd. (2020)

  5. 5.

    M. Pissas, D. Koumoulis, J. Appl. Phys. 122, 143902 (2017)

    Article  ADS  Google Scholar 

  6. 6.

    R. Cortes-Gil, L. Ruiz-Gonzalez, J.M. Alonso, M. Garcia-Hernandez, A. Hernando, J.M. Gonzalez-Calbet, Chem. Mater. 24, 2519–2526 (2012)

    Article  Google Scholar 

  7. 7.

    M. Johnsson, P. Lemmens, Crystallography and Chemistry of Perovskites, Handbook of Magnetism and Advanced Magnetic Materials, Novel materials: ferro- and ferrimagnetic oxides and alloys, John Wiley & Sons (2007)

  8. 8.

    W. Schuddik, G. Tendeloo, C. Martin, M. Hervieu, B. Raveau, J. Alloys Compd. 333, 13–20 (2002)

    Article  Google Scholar 

  9. 9.

    M. Vallet-Regi, E. Herrero, J. Alonso, A. Hernando, J.M. Gonzales-Calbet, Solid State Ion. 141–142, 427–432 (2001)

    Article  Google Scholar 

  10. 10.

    Y.G. Zhao, W. Cai, J. Zhao, X.P. Zhang, B.S. Cao, M.H. Zhu, L.W. Zhang, S.B. Ogale, T. Wu, T. Ventatesan, L. Lu, T.K. Mandal, J. Gopalakrishnan, Phys. Rev. B 65, 144406 (2002)

    Article  ADS  Google Scholar 

  11. 11.

    Y.G. Zhao, W. Cai, J. Zhao, X.P. Zhang, R. Fan, B.S. Cao, M.H. Zhu, T. Wu, S.B. Ogale, S.R. Shinde, T. Venkatesan, Q.Y. Tu, T.K. Mandal, J. Gopalakrishnan, J. Appl. Phys. 92(9), 5391–5394 (2009)

    Article  ADS  Google Scholar 

  12. 12.

    I. Walha, H. Ehrenberg, H. Fuess, A. Cheikhrouhou, J. Alloys Compd. 433, 63–67 (2007)

    Article  Google Scholar 

  13. 13.

    L. Pagliari, M. Dapiaggi, F. Maglia, T. Sarkar, A.K. Raychaudhuri, T. Chatterji, M.A. Carpenter, J. Phys. Condens Matter 26, 435303 (2014)

    Article  ADS  Google Scholar 

  14. 14.

    J.C. Loudon, N.D. Mathur, P.A. Midgley, Nature 420, 797–800 (2002)

    Article  ADS  Google Scholar 

  15. 15.

    J.C. Loudon, N.D. Mathur, P.A. Midgley, J. Magn. Magn. Mater. 272–276, 13–14 (2004)

    Article  ADS  Google Scholar 

  16. 16.

    C.N.R. Rao, J. Phys. Chem. B 104, 5877–5889 (2000)

    Article  Google Scholar 

  17. 17.

    S. Zhou, Y. Guo, Z. Jiang, J. Zhao, X. Cai, L. Shi, J. Phys. Chem. C 117, 8989–8996 (2013)

    Article  Google Scholar 

  18. 18.

    G. Iniama, P. de la Presa, J.M. Alonso, M. Multigner, B.L. Lta, R. Cortes-Gil, M.L. Ruiz-Gonzalez, A. Hernando, J.M. Gonzalez-Calbet, J. Appl. Phys. 116, 113901 (2014)

    Article  ADS  Google Scholar 

  19. 19.

    A. Bhaskar, M.-S. Huang, C.-J. Liu, RSC Adv. 7, 11543–11549 (2017)

    Article  Google Scholar 

  20. 20.

    B.Y. Oh, M.C. Jeong, D.S. Kim, W. Lee, J.M. Myoung, J. Cryst. Growth 281, 475–480 (2005)

    Article  ADS  Google Scholar 

  21. 21.

    H. Kuribayashi, R. Hiruta, R. Shimizu, K. Sudoh, H. Iwasaki, J. Vac. Sci. Technol. A 21, 1279–1283 (2003)

    Article  ADS  Google Scholar 

  22. 22.

    R.K. Singhal, A. Samariya, S. Kumar, Y.T. Xing, D.C. Jain, U.P. Deshpande, T. Shripathi, E. Saitovitch, C.T. Chen, Solid State Commun. 150, 1154–1157 (2010)

    Article  ADS  Google Scholar 

  23. 23.

    L.D. Thanh, P. Balk, J. Electrochem. Soc. 135, 1797–1801 (1988)

    Article  Google Scholar 

  24. 24.

    L. Qian, J. Peng, Z. Xiang, Y. Pan, W. Lu, J. Alloys Compd. 778, 712–720 (2019)

    Article  Google Scholar 

  25. 25.

    P. Ahmad, A.V. Rao, K.S. Babu, G.N. Rao, Mater. Chem. Phys. 243, 122226 (2020)

    Article  Google Scholar 

  26. 26.

    M. Bououdina, A.A. Dakhel, J. Alloys Compd. 601, 162–166 (2014)

    Article  Google Scholar 

  27. 27.

    H.R. Khakhal, S. Kumar, S.N. Dolia, B. Dalela, V.S. Vats, S.Z. Hashmi, P.A. Alvi, S. Kumar, S. Dalela, J. Alloys Compd. 844, 156079 (2020)

    Article  Google Scholar 

  28. 28.

    A. Dakhel, Mater. Chem. Phys 252, 123163 (2020)

    Article  Google Scholar 

  29. 29.

    R.K. Singhal, A. Samariya, S. Kumar, Y.T. Xing, E. Saitovitch, Mater. Lett. 64, 1846–1849 (2010)

    Article  Google Scholar 

  30. 30.

    S. Kumar, J. Alloys Compd. 515, 20–21 (2012)

    Article  Google Scholar 

  31. 31.

    C. Suryanarayana, M. Grant Norton, X-Ray Diffraction a Practical Approach, New York: Plenum Press, (1998)

  32. 32.

    S.S. Kekade, R.S. Devan, A.V. Deshmukh, D.M. Phase, R.J. Choudhary, S.I. Patil, J. Alloys Compd. 682, 447–453 (2016)

    Article  Google Scholar 

  33. 33.

    J. Rodriguez-Carvajal, FullProf.2k, Version 6.20, Institute Laue-Langevin and Laboratories Leon Brillouin (CEA-CNRS), Jan (2018).

  34. 34.

    M. Mansouri, H. Omrani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Madouri, A. Cheikhrouhou, J. Magn. Magn. Mater. 401, 593–599 (2016)

    Article  ADS  Google Scholar 

  35. 35.

    S. Dhieb, A. Krichene, N.C. Boudjada, W. Boujelben, J. Phys. Chem. C 124, 17762–17771 (2020)

    Article  Google Scholar 

  36. 36.

    A. Arabi, M. Fazli, M.H. Ehsani, Bull. Mater. Sci. 41, 77 (2018)

    Article  Google Scholar 

  37. 37.

    S.M. Ali, B. Al-Oufi, Cellulose 27, 429–440 (2020)

    Article  Google Scholar 

  38. 38.

    S.Y. Oh, D.I. Yoo, Y. Shin, G. Seo, Carbohydr. Res. 340, 417–428 (2005)

    Article  Google Scholar 

  39. 39.

    L. Wei, Y. Yang, X. Xia, R. Fan, T. Su, Y. Shi, J. Yu, L. Li, Y. Jiang, RSC Adv. 5, 70512–70521 (2015)

    Article  Google Scholar 

  40. 40.

    J.M.D. Coey, M. Viret, Adv. Phys. 48(2), 167–293 (1999)

    Article  ADS  Google Scholar 

  41. 41.

    M. Shaterian, M. Enhessari, D. Rabbani, M. Asghari, M. Salavati-Niasari, Appl. Surf. Sci. 318, 213–217 (2014)

    Article  ADS  Google Scholar 

  42. 42.

    A.O. Turky, M.M. Rashad, A.M. Hassan, E.M. Elnaggar, M. Bechelany, Phys. Chem. Chem. Phys. 19, 6878–6886 (2017)

    Article  Google Scholar 

  43. 43.

    G. Lal, K. Punia, S.N. Dolia, P.A. Alvi, S. Dalela, S. Kumar, Ceram. Int. 45, 5837–5847 (2019)

    Article  Google Scholar 

  44. 44.

    N.A. Shah, Appl. Nanosci. 4, 889–895 (2014)

    Article  ADS  Google Scholar 

  45. 45.

    P.M. Botta, J. Mira, A. Fondado, J. Rivas, Mater. Lett. 61, 2990–2992 (2007)

    Article  Google Scholar 

  46. 46.

    X.-S. Cao, G.-F. Ji, B.-C. Luo, F. Li, J. Alloys Compd. 568, 1–4 (2013)

    Article  Google Scholar 

  47. 47.

    K. Sultan, M. Ikram, Adv. Mater. Lett. 6(8), 749–755 (2015)

    Article  Google Scholar 

  48. 48.

    G. Lal, K. Punia, S.N. Dolia, P.A. Alvi, B.L. Choudhary, S. Kumar, J. Alloys Compd. 828, 154388 (2020)

    Article  Google Scholar 

  49. 49.

    U. Shankar, A.K. Singh, J. Phys. Chem. C 119, 28620–28630 (2015)

    Article  Google Scholar 

Download references


This work has been supported by UGC major project (Grant no. F. No. 41-894/2012(SR)). The authors gratefully acknowledge DST-FIST program for the procurement of Cryo-Bind make ac- susceptibility set-up in the Department of Physics, Mohanlal Sukhadia University, Udaipur. Authors are grateful to Department of Physics, University of Rajasthan for the VSM (procured under DST-FIST scheme) and dielectric facilities. GL is thankful to UGC for the BSR fellowship.

Author information



Corresponding author

Correspondence to Sudhish Kumar.

Ethics declarations

Conflict of interest

Authors of this manuscript declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lal, G., Joshi, J., Bhoi, H. et al. Impact of hydrogenation on the structural, dielectric and magnetic properties of La0.5Ca0.5MnO3. Appl. Phys. A 127, 114 (2021).

Download citation


  • Manganite
  • Hydrogenation
  • Magnetization
  • AC-susceptibility
  • Antiferromagnetism
  • XRD
  • VSM