Strained Si/Si1−yCy superlattice based quasi-read avalanche transit-time devices for terahertz ultrafast switches

Abstract

Effects of selective carbon (C) incorporation in silicon (Si) quasi-read-avalanche-transit-time (QRATT) devices are studied through indigenously developed non-linear Strain-corrected-mixed-quantum-tunneling-drift–diffusion-model (SMQTDDM). A superlattice with alternate thin films of strained-Si and comparatively thick layers of Si0.99C0.01 stressors constitutes the active region. Out-of-plane mobility enhancement occurs due to the in-plane biaxial strain at Si/Si0.99C0.01 interfaces. Band offset between Si/Si0.99C0.01results in high injection velocity. Combined effect of strain-engineering and band offset amounts to the application of periodic accelerating pulse along the active region. This subsequently reduces carrier transit-time and results in THz oscillation in Si-ATT-diode. Remarkable RF performance (RF-power ~ \(23.2\times {10}^{8}\) W/m2 at 0.73 THz) of exotic Si-QRATT-devices is reported for the first time. The simulation incorporates quantum-effects, process-induced-strain, parasitic-resistance, thermal-model and inter-sub-band-tunneling in the dispersion relation of the multiple-quantum-wells through a combined solution of Schrodinger–Poisson equations. The theoretical analysis is verified with experimental observations for in-house-fabricated Si-ATT-diodes. QRATT-device-based THz series-shunt switches are further explored.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Code availability

Software application and custom codes are available with the authors.

References

  1. 1.

    H.A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, T. Ozaki, Intense terahertz radiation and their applications. J. Opt. 18(9), 093004 (2016). https://doi.org/10.1088/2040-8978/18/9/093004

    ADS  Article  Google Scholar 

  2. 2.

    J.-H. Son, S.J. Oh, H. Cheon, Potential clinical applications of terahertz radiation. J. Appl. Phys. 125(19), 190901 (2019). https://doi.org/10.1063/1.5080205

    ADS  Article  Google Scholar 

  3. 3.

    L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, Z. Yang, The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges. RSC Adv. 9(17), 9354–9363 (2019). https://doi.org/10.1039/C8RA10605C

    ADS  Article  Google Scholar 

  4. 4.

    P. Zhao, S. Ragam, Y.J. Ding, I.B. Zotova, Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser. Opt. Lett. 35(23), 3979–4398 (2010). https://doi.org/10.1364/OL.35.003979

    ADS  Article  Google Scholar 

  5. 5.

    P. Zhao, S. Ragam, Y.J. Ding, I.B. Zotova, Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers. Appl. Phys. Lett. 98(13), 131106 (2011). https://doi.org/10.1063/1.3572337

    ADS  Article  Google Scholar 

  6. 6.

    A. Maestrini, I. Mehdi, J.V. Siles, J.S. Ward, R. Lin, B. Thomas et al., Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz. IEEE Trans. Terahertz Sci. Technol. 2(2), 177–185 (2012). https://doi.org/10.1109/TTHZ.2012.2183740

    ADS  Article  Google Scholar 

  7. 7.

    W. Feng, Oscillations up to terahertz frequency in resonant tunneling diodes. Microw. Opt. Technol. Lett. (2019). https://doi.org/10.1002/mop.32174

    Article  Google Scholar 

  8. 8.

    R. Izumi, T. Sato, S. Suzuki, M. Asada, Resonant-tunneling-diode terahertz oscillator with a cylindrical cavity for high-frequency oscillation. AIP Adv. 9(8), 085020 (2019)

    ADS  Article  Google Scholar 

  9. 9.

    T. Maekawa, K. Hidetoshi, S. Safumi, A. Masahiro, Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss. Appl. Phys. Express 9(2), 024101 (2016)

    ADS  Article  Google Scholar 

  10. 10.

    M. Mukherjee, N. Mazumder, S.K. Roy, K. Goswami, GaN IMPATT diode: a photo-sensitive high power terahertz source. Semicond. Sci. Technol. 22(12), 1258–1260 (2007). https://doi.org/10.1088/0268-1242/22/12/003

    ADS  Article  Google Scholar 

  11. 11.

    M. Mukherjee, S.K. Roy, Optically modulated III–V nitride-based top-mounted and flip-chip IMPATT oscillators at terahertz regime: studies on the shift of avalanche transit time phase delay due to photo generated carriers. IEEE Trans. Electron. Dev. 56(7), 1411–1417 (2009). https://doi.org/10.1109/TED.2009.2021441

    ADS  Article  Google Scholar 

  12. 12.

    1no, M., Ishibasi, T., Ohmori, M.: CW oscillation with p+–p–n+ silicon IMPATT diodes in 200 GHz and 300 GHz bands. Electron. Lett. 12(6):148 (1976).

  13. 13.

    Y.M. Niquet, C. Delerue, C. Krzeminski, Effects of strain on the carrier mobility in silicon nanowires. Nano Lett. 12(7), 3545–3550 (2012)

    ADS  Article  Google Scholar 

  14. 14.

    S. Chatterjee, B.N. Chowdhury, A. Das, S. Chattopadhyay, Estimation of step-by-step induced stress in a sequential process integration of nano-scale SOS MOSFETs with high-k gate dielectrics. Semicond. Sci. Technol. 28, 125011 (2013). https://doi.org/10.1088/0268-1242/28/12/125011

    ADS  Article  Google Scholar 

  15. 15.

    S. Chatterjee, S. Chattopadhyay, Modeling and estimation of process-induced stress in the nanowire field-effect-transistors (NW-FETs) on insulator-on-silicon substrates with high-k gate-dielectrics. Superlatt. Microstruct. 98, 194–202 (2016). https://doi.org/10.1016/j.spmi.2016.08.022

    ADS  Article  Google Scholar 

  16. 16.

    S. Chatterjee, S. Chattopadhyay, Analytical modeling of the lattice and thermo-elastic coefficient mismatch-induced stress into silicon nanowires horizontally embedded on insulator-on-silicon substrates. Superlatt. Microstruct. 101, 384–396 (2017). https://doi.org/10.1016/j.spmi.2016.12.001

    ADS  Article  Google Scholar 

  17. 17.

    S. Chatterjee, S. Chattopadhyay, Fraction of insertion of the channel-fin as performance booster in strain-engineered p-FinFET devices with insulator-on-silicon (IOS) substrate. IEEE Trans. Electron. Dev. 65(2), 411–418 (2018). https://doi.org/10.1109/TED.2017.2781264

    ADS  Article  Google Scholar 

  18. 18.

    S. Chatterjee, S. Sikdar, B.N. Chowdhury, S. Chattopadhyay, Investigation of the performance of strain-engineered silicon nanowire field effect transistors (e-Si-NWFET) on IOS substrates. J. Appl. Phys. 125(8), 082506 (2019). https://doi.org/10.1063/1.5051310

    Article  Google Scholar 

  19. 19.

    S. Chatterjee, M. Mukherjee, Strain-engineered asymmetrical superlattice Si/Si1xGex Nano-ATT <p++–n–n−n++> oscillator: enhanced photo-sensitivity in terahertz domain. IEEE Trans. Electron. Dev. 66(8), 3659–3667 (2019). https://doi.org/10.1109/TED.2019.2923108

    ADS  Article  Google Scholar 

  20. 20.

    D. Yu, Y. Zhang, F. Liu, First-principles study of electronic properties of biaxially strained silicon: effects on charge carrier mobility. Phys. Rev. B Condens. Matter 78, 245204 (2008). https://doi.org/10.1103/PhysRevB.78.245204

    ADS  Article  Google Scholar 

  21. 21.

    A. Kundu, S. Adhikari, A. Das, M.R. Kanjilal, M. Mukherjee, Design and characterization of asymmetrical super-lattice Si/4H-SiC PIN photo diode array: a potential opto-sensor for future applications in bio-medical domain. Microsyst. Technol. (2018). https://doi.org/10.1007/s00542-018-4119-4

    Article  Google Scholar 

  22. 22.

    A. Kundu, M.R. Kanjilal, M. Mukherjee, III–V super-lattice SPST/SPMT pin switches for THz communication: theoretical reliability and experimental feasibility studies. Microsyst. Technol. (2018). https://doi.org/10.1007/s00542-018-4053-5

    Article  Google Scholar 

  23. 23.

    A. Kundu, M.R. Kanjilal, M. Mukherjee, Cubic versus hexagonal SiC vertical pin SPST/SPDT/SPMT switches for MMW communication systems: a modified quantum drift-diffusion model for switching characteristics analysis. Microsyst. Technol. Micro- Nanosyst. Inf. Storage Process. Syst. 23(1), 1–20 (2019). https://doi.org/10.1007/s00542-019-04445-9

    Article  Google Scholar 

  24. 24.

    S.E. Thompson, G. Sun, Y.S. Choi, T. Nishida, Uniaxial process-induced strained-Si: extending the CMOS roadmap. IEEE Trans. Electron. Dev. 53(5), 1010–1020 (2006). https://doi.org/10.1109/TED.2006.872088

    ADS  Article  Google Scholar 

  25. 25.

    W. Windl, O.F. Sankey, J. Menendez, Theory of strain and electronic structure of Si1yCy and Si1xyGexCy alloys. Phys. Rev. B 57(4), 2431 (1998). https://doi.org/10.1103/PhysRevB.57.2431

    ADS  Article  Google Scholar 

  26. 26.

    L.B. Freund, S. Suresh, Thin Film Materials Stress, Defect Formation and Surface Evolution, vol. 94 (Cambridge University Press, Cambridge, 2004). https://doi.org/10.1017/CBO9780511754715

    Google Scholar 

  27. 27.

    C. Falco, E. Gatti, A.L. Lacaita, R. Sacco, Quantum-corrected drift–diffusion models for transport in semiconductor devices. J. Comput. Phys. 204(2), 533–561 (2005). https://doi.org/10.1016/j.jcp.2004.10.029

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    D.W. Greve, Si–Ge–C growth and devices. Mater. Sci. Eng. B 87(3), 271–276 (2001). https://doi.org/10.1016/S0921-5107(01)00724-3

    Article  Google Scholar 

  29. 29.

    K.W. Ang, K.J. Chui, V. Blimetsov, A. Du, N. Balasubramanian, M.F. Li, G. Samudra, Y.C. Ye, Enhanced performance in 50 nm N-MOSFETs with silicon–carbon source/drain regions. IEDM technical digest. IEEE Int. Electron. Dev. Meet. (2004). https://doi.org/10.1109/IEDM.2004.1419383

    Article  Google Scholar 

  30. 30.

    M. Mukherjee, N. Mazumder, S.K. Roy, Photosensitivity analysis of gallium nitride and silicon carbide terahertz IMPATT oscillators: comparison of theoretical reliability and study on experimental feasibility. IEEE Trans. Dev. Mater. Reliab. 8(3), 608–620 (2008). https://doi.org/10.1109/TDMR.2008.2002358

    Article  Google Scholar 

  31. 31.

    S.K. Mitra, M. Mukherjee, A 2D modelling of thermal heat sink for IMPATT at high power mmW frequency. Comput. Sci. Inf. Technol. (2013). https://doi.org/10.5121/csit.2013.3237

    Article  Google Scholar 

  32. 32.

    S. Moaveni, Finite Element Analysis: Theory and Application with ANSYS (Prentice Hall, New Jersey, 1999).

    Google Scholar 

  33. 33.

    S.T. Chang, C.Y. Lin, S.H. Liao, Theoretical study of electron mobility for silicon–carbon alloys. Appl. Surf. Sci. 254, 6203–6207 (2008). https://doi.org/10.1016/j.apsusc.2008.02.174

    ADS  Article  Google Scholar 

  34. 34.

    M.S. Arai, S.C. OnoKimura, IMPATT oscillation in SiC p+–n–n+ diodes with a guard ring formed by vanadium ion implantation. Electron. Lett. 40(16), 1026–1027 (2004). https://doi.org/10.1049/el:20045312

    ADS  Article  Google Scholar 

  35. 35.

    Ono, S.M., Arai, M., Kimura, C.: Demonstration of high-power X-band oscillation in p+/n/n+ 4H-SiC IMPATT diodes with guard-ring termination. materials science forum (volumes 483–485), main theme: silicon carbide and related materials (pp. 981–984) (2005). https://doi.org/10.4028/www.scientific.net/MSF.483-485.981

Download references

Acknowledgements

The corresponding author, Moumita Mukherjee, wishes to acknowledge Defence (R&D) for the growth of the device. The authors wish to acknowledge Prof. Hans Hartnagel, Emeritus Professor, Technical University, Darmstadt Germany, for providing important suggestions, technical inputs and scientific comments for this work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Moumita Mukherjee.

Ethics declarations

Conflict of interest

The authors declare there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S., Mukherjee, M. Strained Si/Si1−yCy superlattice based quasi-read avalanche transit-time devices for terahertz ultrafast switches. Appl. Phys. A 127, 155 (2021). https://doi.org/10.1007/s00339-020-04187-w

Download citation

Keywords

  • IMPATT oscillator
  • Super-lattice structure
  • Si/SiC material system
  • Strain Engineering