Structural, electronic, optical, thermoelectric, and transport properties of indium-based double perovskite halides Cs2InAgX6 (X = Cl, Br, I) for energy applications


Ab-initio studies are employed to explore physical aspects of indium-based double halide perovskites Cs2InAgX6 (X = Cl, Br, I) using full-potential linearized augmented plane-waves method along with local orbitals. The electronic behaviors are observed by computing the band structures and density of states, which are determined by employing GGA-PBEsol approximation. The Tran–Blaha-modified Becke–Johnson (TB-mBJ) potential is then further applied. The use of TB-mBJ potential has revealed that direct band gap is exhibited by Cs2InAgX6 (X = Cl, Br, I), which are found agreeing with the literature. Various optical parameters are calculated to evaluate all three double perovskites to unveil their potential applications in optical devices. In addition, BoltzTraP code is used to explore the thermoelectric properties within the temperature range 100–800 K. The studied double perovskites have been suggested as highly appropriate candidates for the fabrication of a variety of renewable energy devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    W. Zhang, G.E. Eperon, H.J. Snaith, Metal halide perovskites for energy applications. Nat. Energy 1(6), 16048 (2016)

    Article  ADS  Google Scholar 

  2. 2.

    W.J. Yin, T. Shi, Y. Yan, Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26(27), 4653–4658 (2014)

    Article  Google Scholar 

  3. 3.

    Q.A. Akkerman, M. Gandini, F. Di Stasio, P. Rastogi, F. Palazon, G. Bertoni, J.M. Ball, M. Prato, A. Petrozza, L. Manna, Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy 2(2), 16194 (2017)

    Article  ADS  Google Scholar 

  4. 4.

    G.E. Eperon, G.M. Paterno, R.J. Sutton, A. Zampetti, A.A. Haghighirad, F. Cacialli, H.J. Snaith, Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3(39), 19688–19695 (2015)

    Article  Google Scholar 

  5. 5.

    T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S.G. Mhaisalkar, Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3(47), 23829–23832 (2015)

    Article  Google Scholar 

  6. 6.

    P. Ramasamy, D.H. Lim, B. Kim, S.H. Lee, M.S. Lee, J.S. Lee, All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 52(10), 2067–2070 (2016)

    Article  Google Scholar 

  7. 7.

    A. Babayigit, D.D. Thanh, A. Ethirajan, J. Manca, M. Muller, H.G. Boyen, B. Conings, Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organism Danio rerio. Sci. Rep. 6, 18721 (2016)

    Article  ADS  Google Scholar 

  8. 8.

    G.E. Eperon, S.N. Habisreutinger, T. Leijtens, B.J. Bruijnaers, J.J. van Franeker, D.W. deQuilettes, S. Pathak, R.J. Sutton, G. Grancini, D.S. Ginger, R.A. Janssen, The importance of moisture in hybrid lead halide perovskite thin film fabrication. ACS Nano 9(9), 9380–9393 (2015)

    Article  Google Scholar 

  9. 9.

    A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15(3), 247 (2016)

    Article  ADS  Google Scholar 

  10. 10.

    M.Z. Rahaman, A.M.A. Hossain, Effect of metal doping on the visible light absorption, electronic structure and mechanical properties of non-toxic metal halide CsGeCl 3. RSC Adv. 8(58), 33010–33018 (2018)

    Article  Google Scholar 

  11. 11.

    K.C. Bhamu, A. Soni, J. Sahariya, Revealing optoelectronic and transport properties of potential perovskites Cs2PdX6 (X = Cl, Br): a probe from density functional theory (DFT). Sol. Energy 162, 336–343 (2018)

    Article  ADS  Google Scholar 

  12. 12.

    T. Zhang, C. Hu, S. Yang, Ion migration: a “Double-Edged Sword” for halide-perovskite-based electronic devices. Small Methods 4(5), 1900552 (2020)

    Article  Google Scholar 

  13. 13.

    G. Volonakis, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, H.J. Snaith, F. Giustino, Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 7(7), 1254–1259 (2016)

    Article  Google Scholar 

  14. 14.

    G. Volonakis, A.A. Haghighirad, R.L. Milot, W.H. Sio, M.R. Filip, B. Wenger, M.B. Johnston, L.M. Herz, H.J. Snaith, F. Giustino, Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 8(4), 772–778 (2017)

    Article  Google Scholar 

  15. 15.

    F. Wei, Z. Deng, S. Sun, F. Zhang, D.M. Evans, G. Kieslich, S. Tominaka, M.A. Carpenter, J. Zhang, P.D. Bristowe, A.K. Cheetham, Synthesis and properties of a lead-free hybrid double perovskite: (CH3NH3)2AgBiBr6. Chem. Mater. 29(3), 1089–1094 (2017)

    Article  Google Scholar 

  16. 16.

    H.C. Sansom, G.F. Whitehead, M.S. Dyer, M. Zanella, T.D. Manning, M.J. Pitcher, T.J. Whittles, V.R. Dhanak, J. Alaria, J.B. Claridge, M.J. Rosseinsky, AgBiI4 as a lead-free solar absorber with potential application in photovoltaics. Chem. Mater. 29(4), 1538–1549 (2017)

    Article  Google Scholar 

  17. 17.

    M.R. Filip, S. Hillman, A.A. Haghighirad, H.J. Snaith, F. Giustino, Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment. J. Phys. Chem. Lett. 7(13), 2579–2585 (2016)

    Article  Google Scholar 

  18. 18.

    C.N. Savory, A. Walsh, D.O. Scanlon, Can Pb-free halide double perovskites support high-efficiency solar cells? ACS Energy Lett. 1(5), 949–955 (2016)

    Article  Google Scholar 

  19. 19.

    Z. Deng, F. Wei, S. Sun, G. Kieslich, A.K. Cheetham, P.D. Bristowe, Exploring the properties of lead-free hybrid double perovskites using a combined computational-experimental approach. J. Mater. Chem. A 4(31), 12025–12029 (2016)

    Article  Google Scholar 

  20. 20.

    X.G. Zhao, J.H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S.H. Wei, L. Zhang, Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139(7), 2630–2638 (2017)

    Article  Google Scholar 

  21. 21.

    A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138(7), 2138–2141 (2016)

    Article  Google Scholar 

  22. 22.

    E.T. McClure, M.R. Ball, W. Windl, P.M. Woodward, Cs2AgBiX6 (X= Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28(5), 1348–1354 (2016)

    Article  Google Scholar 

  23. 23.

    E. Haque, M.A. Hossain, Electronic, phonon transport and thermoelectric properties of Cs2InAgCl6 from first-principles study. Comput. Condens. Matter 19, e00374 (2019)

    Article  Google Scholar 

  24. 24.

    E. Haque, M.A. Hossain, High Seebeck coefficient and ultra-low lattice thermal conductivity in Cs2InAgCl6. arXiv preprint arXiv: 1802.08136 (2018)

  25. 25.

    J. Luo, S. Li, H. Wu, Y. Zhou, Y. Li, J. Liu, J. Li, K. Li, F. Yi, G. Niu, J. Tang, Cs2AgInCl6 double perovskite single crystals: parity forbidden transitions and their application for sensitive and fast UV photodetectors. ACS Photon. 5(2), 398–405 (2017)

    Article  Google Scholar 

  26. 26.

    W. Meng, X. Wang, Z. Xiao, J. Wang, D.B. Mitzi, Y. Yan, Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J. Phys. Chem. Lett. 8(13), 2999–3007 (2017)

    Article  Google Scholar 

  27. 27.

    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Austria, 2001)

    Google Scholar 

  28. 28.

    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008)

    Article  ADS  Google Scholar 

  29. 29.

    D. Koller, F. Tran, P. Blaha, Improving the modified Becke–Johnson exchange potential. Phys. Rev. B 85(15), 155109 (2012)

    Article  ADS  Google Scholar 

  30. 30.

    G.K. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175(1), 67–71 (2006)

    MATH  Article  ADS  Google Scholar 

  31. 31.

    T. Fang, S. Zheng, T. Zhou, H. Chen, P. Zhang, Validity of rigid-band approximation in the study of thermoelectric properties of p-type FeNbSb-based half-Heusler compounds. J. Electron. Mater. 46(5), 3030–3035 (2017)

    Article  ADS  Google Scholar 

  32. 32.

    M.T. Anderson, K.B. Greenwood, G.A. Taylor, K.R. Poeppelmeier, B-cation arrangements in double perovskites. Prog. Solid State Chem. 22(3), 197–233 (1993)

    Article  Google Scholar 

  33. 33.

    C. Lan, J. Luo, M. Dou, S. Zhao, First-principles calculations of the oxygen-diffusion mechanism in mixed Fe/Ti perovskites for solid-oxide fuel cells. Ceram. Int. 45(14), 17646–17652 (2019)

    Article  Google Scholar 

  34. 34.

    S. Zhao, K. Yamamoto, S. Iikubo, S. Hayase, T. Ma, First-principles study of electronic and optical properties of lead-free double perovskites Cs2NaBX6 (B = Sb, Bi; X = Cl, Br, I). J. Phys. Chem. Solids 117, 117–121 (2018)

    Article  ADS  Google Scholar 

  35. 35.

    C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5(2), eaav0693 (2019)

    Article  ADS  Google Scholar 

  36. 36.

    A.E. Fedorovskiy, N.A. Drigo, M.K. Nazeeruddin, The role of Goldschmidt’s tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range. Small Methods 4(5), 1900426 (2020)

    Article  Google Scholar 

  37. 37.

    J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013)

    Article  ADS  Google Scholar 

  38. 38.

    X.G. Zhao, D. Yang, Y. Sun, T. Li, L. Zhang, L. Yu, A. Zunger, Cu–In halide perovskite solar absorbers. J. Am. Chem. Soc. 139(19), 6718–6725 (2017)

    Article  Google Scholar 

  39. 39.

    J. Zhou, Z. Xia, M.S. Molokeev, X. Zhang, D. Peng, Q. Liu, Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6. J. Mater. Chem. A 5(29), 15031–15037 (2017)

    Article  Google Scholar 

  40. 40.

    S.H. Wemple, M. Di Domenico Jr, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3(4), 1338 (1971)

    Article  ADS  Google Scholar 

  41. 41.

    M. Fox, Optical properties of solids. Am. J. Phys. 70, 1269 (2002)

    Article  ADS  Google Scholar 

  42. 42.

    D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, G. Ottaviani, Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors. J. Solid State Chem. 193, 19–25 (2012)

    Article  ADS  Google Scholar 

  43. 43.

    A. Togo, L. Chaput, I. Tanaka, Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B 91(9), 094306 (2015)

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aslam, F., B.Sabir & Hassan, M. Structural, electronic, optical, thermoelectric, and transport properties of indium-based double perovskite halides Cs2InAgX6 (X = Cl, Br, I) for energy applications. Appl. Phys. A 127, 112 (2021).

Download citation


  • Double perovskite halides
  • Density functional theory
  • TB-mBJ potential
  • BoltzTrap code
  • Optical properties