Microstructural, thermal, electrical and magnetic analysis of Mg2+ substituted Cobalt ferrite

A Correction to this article was published on 07 December 2020

This article has been updated


Magnetic nanoparticles of Co1–xMgxFe2O4 (x = 0, 0.08, 0.16, and 0.24) were prepared using sol–gel technique with auto-combustion. Citric acid was used as a chelating agent. The X-ray diffraction (XRD) studies showed that the lattice constant of cobalt ferrite decreases with the rise of magnesium proportion. Field-effect Scanning Electron Microscopy (FESEM) was used for the morphological study of the powdered ferrites. Energy Dispersive Spectroscopy (EDS) gave the compositional analysis of the samples. Two major vibrational frequencies from the Fourier Transform Infrared (FT-IR) Spectroscopy validate the spinel cubic ferrite structure. Raman spectroscopy exposes a doublet-like peak behaviour in A1g and Eg modes as a result of different ionic radius of ions belonging to Mg/Co and Fe. The magnetic parameters like saturation magnetization, coercivity, and remanent were also thoroughly analysed against the increase in the Mg-density in cobalt ferrite. The DC electrical resistivity is found to increase with Mg concentration. The room temperature, electrical and dielectric properties were investigated in the frequency range between 100 and 5 MHz. The observed results were related to the microstructural characteristic and amount of Mg dopants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Change history

  • 07 December 2020

    In the original publication, the second author was missing.


  1. 1.

    T. Roman, R.L. Asavei, N.E. Karkalos, C. Roman, C. Virlan, N. Cimpoesu, B. Istrate, M. Zaharia, A.P. Markopoulos, K. Kordatos, S. Stanciu, A. Pui, Int. J. Appl. Ceram. Technol. 16, 693–705 (2019)

    Article  Google Scholar 

  2. 2.

    C. Virlan, R.G. Ciocarlan, T. Roman, D. Gherca, N. Cornei, A. Pui, Acta Chem. Iasi 21, 19–30 (2013)

    Article  Google Scholar 

  3. 3.

    E. Myrovali, N. Maniotis, A. Makridis, A. Terzopoulou, V. Ntomprougkidis, K. Simeonidis, D. Sakellari, O. Kalogirou, T. Samaras, R. Salikhov, M. Spasova, M. Farle, U. Wiedwald, M. Angelakeris, Sci. Rep. 6, 1–11 (2016)

    Article  Google Scholar 

  4. 4.

    L. Stanciu, Y.H. Won, M. Ganesana, S. Andreescu, Sensors 9, 2976–2999 (2009)

    Article  Google Scholar 

  5. 5.

    B. Sahoo, K.S.P. Devi, S. Dutta, T.K. Maiti, P. Pramanik, D. Dhara, J. Colloid Interface Sci. 431, 31–41 (2014)

    Article  ADS  Google Scholar 

  6. 6.

    V. Constantin, T. Florin, P. Aurel, Int. J. Appl. Ceram. Technol. 14, 1174–1182 (2017)

    Article  Google Scholar 

  7. 7.

    R. Vemuri, G. Raju, M. Gnana Kiran, M.S.N.A. Prasad, E. Rajesh, G. Pavan Kumar, N. Murali, Results Phys. 12, 947–952 (2019)

    Article  ADS  Google Scholar 

  8. 8.

    A. Ramakrishna, N. Murali, S.J. Margarette, Tulu Wegayehu Mammo, N. Krishna Joythi, B. Sailaja, Ch. C. Sailaja Kumari, K. Samatha, V. Veeraiah, Adv. Powder. Technol. 29, 2601–2607 (2018)

  9. 9.

    D. Gherca, A. Pui, V. Nica, O. Caltun, N. Cornei, Ceram. Int. 40, 9599–9607 (2014)

    Article  Google Scholar 

  10. 10.

    A.I. Popov, Z.V. Gareeva, F.A. Mazhitova, R.A. Doroshenko, J. Magn. Magn Mater. 461, 128–131 (2018)

    Article  ADS  Google Scholar 

  11. 11.

    N. Sangeneni, K.M. Taddei, N. Bhat, S.A. Shivashankar, J. Magn. Magn Mater. 465, 590–597 (2018)

    Article  ADS  Google Scholar 

  12. 12.

    S. Lalwani, R.B. Marichi, M. Mishra, G. Gupta, G. Singh, R.K. Sharma, Electrochim. Acta 283, 708–717 (2018)

    Article  Google Scholar 

  13. 13.

    L. Andjelkovic, M. Suljagic, M. Lakic, D. Jeremic, P. Vulic, A.S. Nikolic, Ceram. Int. 44, 14163–14168 (2018)

    Article  Google Scholar 

  14. 14.

    R.G. Ciocarlan, A. Pui, D. Gherca, C. Virlan, M. Dobromir, V. Nica, M.L. Craus, I.N. Gostin, O. Caltun, R. Hempelman, P. Cool, Mater. Res. Bull. 81, 63–70 (2016)

    Article  Google Scholar 

  15. 15.

    G. Rekha, R. Tholkappiyan, K. Vishista, F. Hamed, Appl. Surf. Sci. 385, 171–181 (2016)

    Article  ADS  Google Scholar 

  16. 16.

    S. Qamara, M.N. Akhtar, K.M. Batoo, E.H. Raslan, Ceram. Int. 46, 14481–14487 (2020Ceram)

    Article  Google Scholar 

  17. 17.

    A.B. Mugutkar, S.K. Gore, R.S. Mane, K.M. Batoo, S.F. Adil, S.S. Jadhav, Ceram. Int. 44, 21675–21683 (2018)

    Article  Google Scholar 

  18. 18.

    M.N. Akhtar, M. Babar, S. Qamar, Z. ur Rehman, M.A. Khan, Ceram. Int. 45, 10187–10195 (2019)

    Article  Google Scholar 

  19. 19.

    P. Samoila, L. Sacarescu, A.I. Borhan, D. Timpu, M. Grigoras, N. Lupu, M. Zaltariov, V. Harabagiu, J. Magn. Magn Mater. 378, 92–97 (2015)

    Article  ADS  Google Scholar 

  20. 20.

    J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, J. Magn. Magn. Mater. 323, 133–137 (2011)

    Article  ADS  Google Scholar 

  21. 21.

    G. Raju, N. Murali, M. S. N. A. Prasad, B. Suresh, D. Apparao Babu, M. Gnana Kiran, A. Ramakrishna, M. Tulu Wegayehu, B. Kishore Babu, Mat. Sci. Energy Technol. 2, 78–82 (2019)

  22. 22.

    H.W. Wang, S.C. Kung, J. Magn. Magn. Matter 270, 230–236 (2004)

    Article  ADS  Google Scholar 

  23. 23.

    M. Nahid, A. Reza, A. Bagher, K. Parviz, Cer. Int. 43–17, 15381–15391 (2017)

    Google Scholar 

  24. 24.

    H.M. Zhang, Z. Wang, J.J. Pei, Y. Gao, J. Sol. Gel Sci. Technol. 90, 404–410 (2019)

    Article  Google Scholar 

  25. 25.

    C. Virlan, G. Bulai, O.F. Caltun, R. Hempelmann, A. Pui, Ceram. Int. 42(2016), 11958–11961 (1965)

    Google Scholar 

  26. 26.

    Degradation of methylene blue dye, J. Mol. Struct. 1119, 39–47 (2016)

    Article  Google Scholar 

  27. 27.

    G. Manikandan, M. Durka, S. Arul Antony, J. Supercond. Nov. Magn. 28, 209–218 (2015)

    Article  Google Scholar 

  28. 28.

    G. Mathubala, A. Manikandan, S. Arul Antony, P. Ramar, J. Mol. Struct. 1113, 79–87 (2016)

    Article  ADS  Google Scholar 

  29. 29.

    Manikandan, E. Hema, M. Durka, K. Seevakan, T. Alagesan, S. Arul Antony, J. Supercond. Nov. Magn., 28, 1783–1795 (2015)

    Article  Google Scholar 

  30. 30.

    E. Hema, A. Manikandan, M. Gayathri, M. Durka, S. Arul Antony, B.R. Venkatraman, J. Nanosci. Nanotech. 16, 5929–5943 (2016)

    Article  Google Scholar 

  31. 31.

    Manikandan, E. Manikandan, S. Vadivel, M. Kumaravel, D. Maruthamani, S. Hariganesh, Photocatalysis: Mater. Res. Found. 29, 34 (2018)

    Google Scholar 

  32. 32.

    G. Padmapriya, A. Manikandan, V. Krishnasamy, S.K. Jaganathan, S. Arul Antony, J. Supercond. Nov. Magn. 29, 2141–2149 (2016)

    Article  Google Scholar 

  33. 33.

    Manikandan, S. Arul Antony, R. Sridhar, Seeram Ramakrishna, M. Bououdina, J. Nanosci. Nanotech. 15, 4948–4960 (2015)

    Article  Google Scholar 

  34. 34.

    G. Mathubala, A. Manikandan, S. Arul Antony, P. Ramar, Nanosci. Nanotech. Lett. 8, 375–381 (2016)

    Article  Google Scholar 

  35. 35.

    D. Santosh Kumar, K. Chandra Mouli, Int. J. Nanotechnol. Appl. 4(1), 51–59 (2010)

    Google Scholar 

  36. 36.

    Manikandan, M. Durka, S. Arul Antony, Adv. Sci., Eng. Med. 7, 33–46 (2015)

    Google Scholar 

  37. 37.

    E. Hema, A. Manikandan, P. Karthika, M. Durka, S. Arul Antony, B.R. Venkatraman, J. Nanosci. Nanotech. 16, 7325–7336 (2016)

    Article  Google Scholar 

  38. 38.

    Manikandan, M. Durka, S. Arul Antony, J. Supercond. Nov. Magn. 28, 2047–2058 (2015)

    Article  Google Scholar 

  39. 39.

    R.A. Senthil, S. Osman, J. Pan, Y. Sun, T.R. Kumar, A. Manikandan, Ceram. Int. 45, 18683–18690 (2019)

    Article  Google Scholar 

  40. 40.

    S. Velanganni, A. Manikandan, J. Joseph Prince, C. Neela Mohan, R. Thiruneelakandan, Phys. B 545, 383–389 (2018)

    Article  ADS  Google Scholar 

  41. 41.

    B. Shinde, Int. J. Res. Eng. Appl. Sci. 6(3), 75–77 (2016)

    Google Scholar 

  42. 42.

    S.A. Mazen, N.I. Abu-Elsaad, Appl. Nanosci. 5, 105–114 (2015)

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to N. Murali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jesus Mercy, S., Parajuli, D., Murali, N. et al. Microstructural, thermal, electrical and magnetic analysis of Mg2+ substituted Cobalt ferrite. Appl. Phys. A 126, 873 (2020). https://doi.org/10.1007/s00339-020-04048-6

Download citation


  • Magnetic nanoparticle
  • Magnetic parameter
  • Electrical property
  • Dielectric property
  • Microstructure