Skip to main content
Log in

K-carrageenan/PVA/nano-eggshell biocomposite-based non-enzymatic electrochemical biosensor for low-level urea detection

  • T.C. Biological and Biomimetic Materials
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

As a comprehensive survey on both health and biosensor technologies, in this study, a non-enzymatic electrochemical biosensor based on kappa-carrageenan/PVA/nano-eggshell (K-carrageenan/PVA/nano-eggshell) biocomposite was prepared to detect low-level urea in phosphate-buffered solution (PBS). Novel K-carrageenan/PVA/nano-eggshell biocomposite was prepared by ultrasonics sonochemistry. The electrochemical biosensor showed a sensitivity of 0.018 μA μM−1 cm−2 in a linear range of [250–1000] μM urea. Urea detection limit of the biosensor was 60 μM at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Dutta, S. Chandra, A.K. Swain, D. Bahadur, SnO2 quantum dots-reduced graphene oxide composite for enzyme-free ultrasensitive electrochemical detection of urea. Anal. Chem. 86, 5914–5921 (2014)

    Google Scholar 

  2. A. Sharma, K. Rawat, H.B. Bohidar, P.R. Solankia, Studies on clay-gelatin nanocomposite as urea biosensor. Appl. Clay Sci. 146, 297–305 (2017)

    Google Scholar 

  3. S. Clark, P.S. Francis, X.A. Conlan, N.W. Barnett, Determination of urea using high-performance liquid chromatography with fluorescence detection after automated derivation with xanthydrol. J. Chromatogr. A 1161, 207–213 (2007)

    Google Scholar 

  4. K.M. Khan, H. Krishna, S.K. Majumder, P.K. Gupta, Detection of urea adulteration in milk using near-infrared Raman spectroscopy. Food Anal. Methods 8, 93–102 (2015)

    Google Scholar 

  5. X.C. Hu, N. Takenaka, M. Kitano, H. Bandow, Y. Maeda, M. Hattori, Determination of trace amounts of urea by using flow injection with chemiluminescence detection. Analyst 119, 1829–1833 (1994)

    ADS  Google Scholar 

  6. L. Liu, H. Mo, S. Wei, D. Raftery, Quantitative analysis of urea in human urine and serum by 1H nuclear magnetic resonance. Analyst 137, 595–600 (2012)

    ADS  Google Scholar 

  7. T.Q. Tran, S.W. Yoon, B.J. Park, H.H. Yoon, J. Electroanal. Chem. 818, 76–83 (2018)

    Google Scholar 

  8. B.E. Raabo, T. Terkildsen, On the enzymatic determination of blood urea. Scand. J. Clin. Lab. Investig. 12, 402–407 (1960)

    Google Scholar 

  9. R. Wilson, A. Turner, Urea oxidase: an ideal enzyme. Biobiosens. Bioelectron. 7, 165–185 (1992)

    Google Scholar 

  10. A.S.G. Huggett, D. Nixon, Use of urea oxidase, peroxidase, and O-dianisidine in determination of blood and urinary urea. Lancet 270, 368–370 (1957)

    Google Scholar 

  11. J. Luo, S. Jiang, H. Zhang, J. Jiang, X.A. Liu, novel non-enzymatic urea biosensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta 709, 47–53 (2012)

    Google Scholar 

  12. S.A. Ansari, Q. Husain, Potential applications of enzymes immobilized on/in nanomaterials: a review. Biotechnol. Adv. 30, 512–523 (2012)

    Google Scholar 

  13. S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic urea biosensors. Anal. Chim. Acta 556, 46–57 (2006)

    Google Scholar 

  14. S. Cherevko, C.-H. Chung, Gold nanowire array electrode for non-enzymatic voltammetric and amperometric urea sensing”. Biosens. Actuators B Chem. 142, 216–223 (2009)

    Google Scholar 

  15. J. Ryu, K. Kim, H.-S. Kim, H.T. Hahn, D. Lashmore, Intense pulsed light induced platinum–gold alloy formation on carbon nanotubes for non-enzymatic urea sensing. Biobiosens. Bioelectron. 26, 602–607 (2010)

    Google Scholar 

  16. H.-F. Cui, J.-S. Ye, W.-D. Zhang, C.-M. Li, J.H.T. Luong, F.-S. Sheu, Selective and sensitive electrochemical sensing of urea in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites. Anal. Chim. Acta 594, 175–183 (2007)

    Google Scholar 

  17. F. Gao, F. Zhou, Y. Yao, Y. Zhang, L. Du, D. Geng, P. Wang, Ordered assembly of platinum nanoparticles on carbon nanocubes and their application in the non-enzymatic sensing of urea. J. Electroanal. Chem. 803, 165–172 (2017)

    Google Scholar 

  18. S. Park, T.D. Chung, H.C. Kim, Nonenzymatic urea sensing using mesoporous platinum. Anal. Chem. 75, 3046–3049 (2003)

    Google Scholar 

  19. S. Cherevko, C.-H. Chung, The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic urea sensing. Talanta 80, 1371–1377 (2010)

    Google Scholar 

  20. S.C. Hou, A.Y. Zhang, M. Su, Nanostructures for biosensing applications. Nanostructures 6, 58 (2016)

    Google Scholar 

  21. C.E. Rowland, C.W. Brown, J.B. Delehanty, I.L. Medintz, Nanostructure-based biosensors for the sensing of biological threat agents. Mater. Today 19, 464–477 (2016)

    Google Scholar 

  22. S. SoYoon, A. Ramadoss, B. Saravanakumar, S.J. Kim, Novel Cu/CuO/ZnO hybrid hierarchical nanostructures for non-enzymatic urea biosensor application. J. Electroanal. Chem. 717, 90–95 (2014)

    Google Scholar 

  23. K. Zhang, J. Xu, K.Y. Wang, L. Cheng, J. Wang, B. Lıu, Preparation and characterization of chitosan nanocomposites with vermiculite of different modification. Polym. Degrad. Stabil. 94(12), 2121–2127 (2009)

    Google Scholar 

  24. R. Jayakumar, M. Prabaharan, R.L. Reis, J.F. Mano, Graft copolymerized chitosan-present status and applications. Carbohydr. Polym. 62(2), 142–158 (2005)

    Google Scholar 

  25. R.D. Joerger, Antimicrobial films for food applications: a quantitative analysis of their effectiveness. Packag. Technol. Sci. 20(4), 231–273 (2007)

    Google Scholar 

  26. N. Vıswanathan, S. Meenakshı, Enriched fluoride sorption using alumina/chitosan composite. J. Hazard. Mater. 178(1–3), 226–232 (2010)

    Google Scholar 

  27. M. Huleıhel, V. Pavlov, V. Erukhımovıtch, The use of FTIR microscopy for the evaluation of anti-bacterial agents activity. J. Photochem. Photobiol. B: Biol. 96, 17–23 (2009)

    Google Scholar 

  28. L. Luo, L. Zhu, Z. Wang, Nonenzymatic amperometric determination of urea by CuO nanocubes–graphene nanocomposite modified electrode. Bioelectrochemistry 88, 156–163 (2009)

    Google Scholar 

  29. N.R. Stradiotto, H. Yamanaka, M.V.B. Zanoni, Electrochemical biosensors: a powerful tool in analytical chemistry. J. Braz. Chem. Soc. 14, 159–173 (2003)

    Google Scholar 

  30. Q. Wang, J.B. Zheng, H.F. Zhang, A novel formaldehyde biosensor containing AgPd alloy nanoparticles transducer posited on an ionic liquid-chitosan composite film. J. Electroanal. Chem. 674, 1–6 (2012)

    Google Scholar 

  31. I. Švancara, K. Vytřas, K. Kalcher, A. Walcarius, J. Wang, Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis 21, 7–28 (2009)

    Google Scholar 

  32. J. Zima, I. Švancara, J. Barek, K. Vytřas, Recent advances in electroanalysis of organic compounds at carbon paste electrodes. Crit. Rev. Anal. Chem. 39, 204–227 (2009)

    Google Scholar 

  33. V. Vyskocil, J. Barek, Mercury electrodes-possibilities and limitations in environmental electroanalysis. J. Crit Rev Anal Chem. 39, 189–203 (2009)

    Google Scholar 

  34. J.R. Stetter, J. Li, Amperometric gas biosensors—a review. Chem. Rev. 108, 352–366 (2008)

    Google Scholar 

  35. U. Yogeswaran, S.M. Chen, A review on the electrochemical biosensors and biobiosensors composed of nanowires as sensing material. Biosensors 8, 290–313 (2008)

    Google Scholar 

  36. D.E. Mays, A. Hussam, Voltammetric methods for determination and speciation of inorganic arsenic in the environment—a review. Anal Chim. Acta 646, 6–16 (2008)

    Google Scholar 

  37. A. Bobrowski, A. Królicka, J. Zarębski, Characteristics of voltammetric determination and speciation of chromium—a review. Electroanalysis 12, 1449–1458 (2009)

    Google Scholar 

  38. C. Amatore, A. Oleinick, I. Svir, Theoretical analysis of microscopic ohmic drop effects on steady-state and transient voltammetry at the disk microelectrode: a quasi-conformal mapping modeling and simulation. Anal. Chem. 80, 7947–7956 (2008)

    Google Scholar 

  39. C. Amatore, A.I. Oleinick, I. Svir, Numerical simulation of diffusion processes at recessed disk microelectrode arrays using the quasi-conformal mapping approach. Anal. Chem. 81, 4397–4405 (2009)

    Google Scholar 

  40. J.D. Guo, E. Lindner, Cyclic voltammograms at coplanar and shallow recessed microdisk electrode arrays: guidelines for design and experiment. Anal. Chem. 81, 130–138 (2009)

    Google Scholar 

  41. E.F. Douglass, P.F. Driscoll, D. Liu, N.A. Burnham, C.R. Lambert, W.G. McGimpsey, Effect of electrode roughness on the capacitive behavior of self-assembled monolayers. Anal. Chem. 80, 7670–7677 (2008)

    Google Scholar 

  42. D. Menshykau, R.G. Compton, The influence of electrode porosity on diffusional cyclic voltammetry. Electroanalysis 20, 2387–2394 (2008)

    Google Scholar 

  43. J.H. Bae, Y.R. Lim, W. Jung, R.J. Silbey, J. Sung, Practical model for imperfect conductometric molecular wire biosensors. Anal. Chem. 81, 578–583 (2009)

    Google Scholar 

  44. C.Y. Lee, A.M. Bond, Evaluation of levels of defect sites present in highly ordered pyrolytic graphite electrodes using capacitive and faradaic current components derived simultaneously from large-amplitude Fourier transformed ac voltammetric experiments. Anal. Chem. 81, 584–594 (2009)

    Google Scholar 

  45. D.B. Sheth, R. Diefes, M. Gratzl, Spatially averaging electrodes. Anal. Chem. 81, 2129–2134 (2009)

    Google Scholar 

  46. V.I. Ogurtsov, V. Beni, J. Strutwolf, D.W.M. Arrigan, Study of the effects of nonlinear potential sweeps on voltammetry. Electroanalysis 21, 68–76 (2009)

    Google Scholar 

  47. N.G. Rajendra, K.G. Vinod, B. Neeta, A.S. Ram, Electrochemical biosensor for the determination of dopamine in presence of high concentration of ascorbic acid using a Fullerene-C60 coated gold electrode. Electroanalysis 20(7), 757–764 (2008)

    Google Scholar 

  48. A. Saxena, M. Kaloti, H.B. Bohidar, Rheological properties of binary and ternary protein polysaccharide co-hydrogels and comparative release kinetics of salbutamol sulphate from their matrices. Int. J. Biol. Macromol. 48(2), 263–270 (2011)

    Google Scholar 

  49. S. Selvakumaran, I.I. Muhamad, S.I. AbdRazak, Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: effect of pore forming agents. Carbohydr. Polym. 135, 207–214 (2016)

    Google Scholar 

  50. J. Zhao, C. Sun, H. Li, X. Dong, X. Zhang, Studies on the physicochemical properties, gelling behavior and drug release performance of agar/κ-carrageenan mixed hydrogels. Int. J. Biol. Macromol. 154, 878–887 (2020)

    Google Scholar 

  51. N.N. Mobarak, N. Ramli, A. Ahmad, M.Y.A. Rahman, Chemical interaction and conductivity of carboxymethyl κ-carrageenan based green polymer electrolyte. Solid State Ion. 224, 51–57 (2012)

    Google Scholar 

  52. M. Nithya, M. Alagar, B. Sundaresan, Eco-friendly biopolymer kappa carrageenan with NH4Br application in energy saving battery. Mater. Lett. 263, 127295 (2020)

    Google Scholar 

  53. R. Zamora-Sequeira, I. Ardao, R. Starbird, C.A. García-González, Conductive nanostructured materials based on poly-(3, 4-ethylenedioxythiophene)(PEDOT) and starch/κ-carrageenan for biomedical applications. Carbohyd. Polym. 189, 304–312 (2018)

    Google Scholar 

  54. S. Rudhziah, A. Ahmad, I. Ahmad, N.S. Mohamed, Biopolymer electrolytes based on blend of kappa-carrageenan and cellulose derivatives for potential application in dye sensitized solar cell. Electrochim. Acta 175, 162–168 (2015)

    Google Scholar 

  55. S. Sriram, I.M. Nambi, R. Chetty, Hexavalent chromium reduction through redox electrolytic cell with urea and cow urine as anolyte”. J. Environ. Manag. 232, 554–563 (2019)

    Google Scholar 

  56. W. Wang, D. Chai, J. Zhang, S. Xue, Y. Wang, Z. Lei, Ni5Sm-P/C ternary alloyed catalyst as highly efficient electrocatalyst for urea electrooxidation. J. Taiwan Inst. Chem. Eng. 80, 326–332 (2017)

    Google Scholar 

  57. Z.P. Yang, X. Liu, C.J. Zhang, B.Z. Liu, A high-performance nonenzymatic piezoelectric sensor based on molecularly imprinted transparent TiO2 film for detection of urea. Biosens. Bioelectron. 74, 85–90 (2015)

    Google Scholar 

  58. R. Ahmad, N. Tripathy, Y.B. Hahn, Highly stable urea sensor based on ZnO nanorods directly grown on Ag/glass electrodes. Sens. Actuators B Chem. 194, 290–295 (2014)

    Google Scholar 

  59. H. Yin, Z. Cui, L. Wang, Q. Nie, In situ reduction of the Cu/Cu2O/carbon spheres composite for enzymaticless glucose sensors. Sens. Actuators B Chem. 222, 1018–1023 (2016)

    Google Scholar 

  60. E. Muthusankar, V.K. Ponnusamy, D. Ragupathy, Electrochemically sandwiched poly (diphenylamine)/phosphotungstic acid/graphene nanohybrid as highly sensitive and selective urea biosensor. Synth. Metals 254, 134–140 (2019)

    Google Scholar 

  61. T.Q.N. Tran, G. Das, H.H. Yoon, Nickel-metal organic framework/MWCNT composite electrode for non-enzymatic urea detection. Sens. Actuators B Chem. 243, 78–83 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported by TUBITAK Project 216M421.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevin Taşaltın.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taşaltın, N., Aydın, E., Karakuş, S. et al. K-carrageenan/PVA/nano-eggshell biocomposite-based non-enzymatic electrochemical biosensor for low-level urea detection. Appl. Phys. A 126, 827 (2020). https://doi.org/10.1007/s00339-020-03960-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03960-1

Keywords

Navigation