The effects of operating parameters on the morphology, and the SERS of Cu NPs prepared by spark discharge deposition

Abstract

Copper nanoparticles were fabricated and deposited on a glass substrate by spark discharge of copper electrode under different atmospheric conditions for SERS application. An interesting dependence of the deposition process and the formation of different particle structures on the deposition atmospheres were observed. Static air atmosphere ensured the deposition of the Cu particles on the glass surface by avoiding the repulsion between charged Cu particles and the surface of the glass through the formation of CuO, which acts as a seed mediated for nanorods formation. The average diameter of the as-deposited Cu rods was measured by the TEM to be 39 nm. Thermal annealing of the film up to 200 °C resulted in a reduction in the diameter of the nanorods as well as an increase in the rod density. A water solution of dye molecule (crystal violet) with a concentration of 1 × 10–6 to 1 × 10–9 M was dropped on the prepared Cu substrate. Raman signals from dye molecule were detected and their intensities changed according to deposition time, post-annealing temperature and dye concentration. A significant increase in the Raman scattering signal of a dye molecule was observed in the film fabricated at 30 min of deposition time and post-annealed temperature of 200 °C for 1 h. This substrate provides a maximum SERS intensity with a detection limit of 1 × 10–8 M, with an enhancement factor of 3.9 × 103. The SERS performance of the substrates was correlated well with the change in their surface morphologies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    K.Q. Lin, J. Yi, S. Hu, B.J. Liu, J.Y. Liu, X. Wang, B. Ren, Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy. J. Phys. Chem. C 120, 20806–20813 (2016). https://doi.org/10.1021/acs.jpcc.6b02098

    Article  Google Scholar 

  2. 2.

    M. Proença, M.S. Rodrigues, J. Borges, F. Vaz, Optimization of Au:CuO nanocomposite thin films for gas sensing with high-resolution localized surface plasmon resonance spectroscopy. Anal. Chem. 92, 4349–4356 (2020). https://doi.org/10.1021/acs.analchem.9b05153

    Article  Google Scholar 

  3. 3.

    K. Yuan, Q. Mei, X. Guo, Y. Xu, D. Yang, B.J. Sánchez, B. Sheng, C. Liu, Z. Hu, G. Yu, H. Ma, H. Gao, C. Haisch, R. Niessner, Z. Jiang, H. Zhou, Antimicrobial peptide based magnetic recognition elements and Au@Ag-GO SERS tags with stable internal standards: a three in one biosensor for isolation, discrimination and killing of multiple bacteria in whole blood. Chem. Sci. 9, 8781–8795 (2018). https://doi.org/10.1039/c8sc04637a

    Article  Google Scholar 

  4. 4.

    H.K. Lee, Y.H. Lee, C.S.L. Koh, G.C. Phan-Quang, X. Han, C.L. Lay, H.Y.F. Sim, Y.C. Kao, Q. An, X.Y. Ling, Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chem. Soc. Rev. 48, 731–756 (2019). https://doi.org/10.1039/c7cs00786h

    Article  Google Scholar 

  5. 5.

    D.K. Sarfo, E.L. Izake, A.P. O’Mullane, G.A. Ayoko, Fabrication of nanostructured SERS substrates on conductive solid platforms for environmental application. Crit. Rev. Environ. Sci. Technol. 49, 1294–1329 (2019). https://doi.org/10.1080/10643389.2019.1576468

    Article  Google Scholar 

  6. 6.

    Z. Lin, L. He, Recent advance in SERS techniques for food safety and quality analysis: a brief review. Curr. Opin. Food Sci. 28, 82–87 (2019). https://doi.org/10.1016/j.cofs.2019.10.001

    Article  Google Scholar 

  7. 7.

    M. Liszewska, B. Bartosewicz, B. Budner, B. Nasiłowska, M. Szala, J.L. Weyher, I. Dzięcielewski, Z. Mierczyk, B.J. Jankiewicz, Evaluation of selected SERS substrates for trace detection of explosive materials using portable Raman systems. Vib. Spectrosc. 100, 79–85 (2019). https://doi.org/10.1016/j.vibspec.2018.11.002

    Article  Google Scholar 

  8. 8.

    J. Yang, X.Y. Wang, L. Zhou, F. Lu, N. Cai, J.M. Li, Highly sensitive SERS monitoring of catalytic reaction by bifunctional Ag–Pd triangular nanoplates. J. Saudi Chem. Soc. 23, 887–895 (2019). https://doi.org/10.1016/j.jscs.2019.01.007

    Article  Google Scholar 

  9. 9.

    M.F. Cardinal, E. Van der Ende, R.A. Hackler, M.O. McAnally, P.C. Stair, G.C. Schatz, R.P. Van Duyne, Expanding applications of SERS through versatile nanomaterials engineering. Chem. Soc. Rev. 46, 3886–3903 (2017). https://doi.org/10.1039/c7cs00207f

    Article  Google Scholar 

  10. 10.

    C. Muehlethaler, M. Leona, J.R. Lombardi, Review of surface enhanced Raman scattering applications in forensic science. Anal. Chem. 88, 152–169 (2016). https://doi.org/10.1021/acs.analchem.5b04131

    Article  Google Scholar 

  11. 11.

    X.Y. Yan, Y.H. Wang, G.C. Shi, M.L. Wang, J.Z. Zhang, X. Sun, H.J. Xu, Flower-like Cu nanoislands decorated onto the cicada wing as SERS substrates for the rapid detection of crystal violet. Optik (Stuttg). 172, 812–821 (2018). https://doi.org/10.1016/j.ijleo.2018.07.088

    ADS  Article  Google Scholar 

  12. 12.

    I.A. Mudunkotuwa, J.M. Pettibone, V.H. Grassian, Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials. Environ. Sci. Technol. 46, 7001–7010 (2012). https://doi.org/10.1021/es203851d

    ADS  Article  Google Scholar 

  13. 13.

    Y. Qian, S. Lu, F. Gao, Synthesis of copper nanoparticles/carbon spheres and application as a surface-enhanced Raman scattering substrate. Mater. Lett. 81, 219–221 (2012). https://doi.org/10.1016/j.matlet.2012.05.018

    Article  Google Scholar 

  14. 14.

    L. Hang, Y. Zhao, H. Zhang, G. Liu, W. Cai, Y. Li, L. Qu, Copper nanoparticle@graphene composite arrays and their enhanced catalytic performance. Acta Mater. 105, 59–67 (2016). https://doi.org/10.1016/j.actamat.2015.12.029

    Article  Google Scholar 

  15. 15.

    A. Mao, M. Ding, X. Jin, X. Gu, C. Cai, C. Xin, T. Zhang, Direct, rapid synthesis of water-dispersed copper nanoparticles and their surface-enhanced Raman scattering properties. J. Mol. Struct. 1079, 396–401 (2015). https://doi.org/10.1016/j.molstruc.2014.09.003

    ADS  Article  Google Scholar 

  16. 16.

    D. Xu, Z. Dong, J.L. Sun, Fabrication of copper nanowires by a solid-state ionics method and their surface enhanced Raman scattering effect. Mater. Lett. 92, 143–146 (2013). https://doi.org/10.1016/j.matlet.2012.10.057

    Article  Google Scholar 

  17. 17.

    Q. Shao, R. Que, M. Shao, L. Cheng, S.T. Lee, Copper nanoparticles grafted on a silicon wafer and their excellent surface-enhanced Raman scattering. Adv. Funct. Mater. 22, 2067–2070 (2012). https://doi.org/10.1002/adfm.201102943

    Article  Google Scholar 

  18. 18.

    A.J. Pereira, J.P. Gomes, G.F. Lenz, R. Schneider, J.A. Chaker, P.E.N. De Souza, J.F. Felix, Facile shape-controlled fabrication of copper nanostructures on borophosphate glasses: synthesis, characterization, and their highly sensitive surface-enhanced Raman scattering (SERS) properties. J. Phys. Chem. C 120, 12265–12272 (2016). https://doi.org/10.1021/acs.jpcc.6b02881

    Article  Google Scholar 

  19. 19.

    T. Ramani, K. Leon Prasanth, B. Sreedhar, Air stable colloidal copper nanoparticles: synthesis, characterization and their surface-enhanced Raman scattering properties. Phys. E Low Dimens. Syst. Nanostruct. 77, 65–71 (2016). https://doi.org/10.1016/j.physe.2015.11.002

    ADS  Article  Google Scholar 

  20. 20.

    M.I. Dar, S. Sampath, S.A. Shivashankar, Microwave-assisted, surfactant-free synthesis of air-stable copper nanostructures and their SERS study. J. Mater. Chem. 22, 22418–22423 (2012). https://doi.org/10.1039/c2jm35629e

    Article  Google Scholar 

  21. 21.

    G. Rao, X. Jian, W. Lv, G. Zhu, J. Xiong, W. He, A highly-efficient route to three-dimensional nanoporous copper leaves with high surface enhanced Raman scattering properties. Chem. Eng. J. 321, 394–400 (2017). https://doi.org/10.1016/j.cej.2017.03.140

    Article  Google Scholar 

  22. 22.

    Q. Ding, L. Hang, L. Ma, Controlled synthesis of Cu nanoparticle arrays with surface enhanced Raman scattering effect performance. RSC Adv. 8, 1753–1757 (2018). https://doi.org/10.1039/c7ra10694g

    Article  Google Scholar 

  23. 23.

    S.L. Smitha, K.G. Gopchandran, N. Smijesh, R. Philip, Size-dependent optical properties of Au nanorods. Prog. Nat. Sci. Mater. Int. 23, 36–43 (2013). https://doi.org/10.1016/j.pnsc.2013.01.005

    Article  Google Scholar 

  24. 24.

    X. Yang, S. Chen, S. Zhao, D. Li, H. Ma, Synthesis of copper nanorods using electrochemical methods. J. Serbian Chem. Soc. 68, 843–847 (2003). https://doi.org/10.2298/JSC0311843Y

    Article  Google Scholar 

  25. 25.

    M. Luo, A. Ruditskiy, H.C. Peng, J. Tao, L. Figueroa-Cosme, Z. He, Y. Xia, Penta-twinned copper nanorods: facile synthesis via seed-mediated growth and their tunable plasmonic properties. Adv. Funct. Mater. 26, 1209–1216 (2016). https://doi.org/10.1002/adfm.201504217

    Article  Google Scholar 

  26. 26.

    K. Chen, X. Zhang, Y. Zhang, D.Y. Lei, H. Li, T. Williams, D.R., MacFarlane, highly ordered Ag/Cu hybrid nanostructure arrays for ultrasensitive surface-enhanced Raman spectroscopy. Adv. Mater. Interfaces. 3, 7 (2016). https://doi.org/10.1002/admi.201600115

    Article  Google Scholar 

  27. 27.

    Z. Liu, Y. Bando, A novel method for preparing copper nanorods and nanowires. Adv. Mater. 15, 303–305 (2003). https://doi.org/10.1002/adma.200390073

    ADS  Article  Google Scholar 

  28. 28.

    P.I. Wang, T.C. Parker, T. Karabacak, G.C. Wang, T.M. Lu, Size control of Cu nanorods through oxygen-mediated growth and low temperature sintering. Nanotechnology 20, 8 (2009). https://doi.org/10.1088/0957-4484/20/8/085605

    Article  Google Scholar 

  29. 29.

    M. Keating, S. Song, G. Wei, D. Graham, Y. Chen, F. Placido, Ordered silver and copper nanorod arrays for enhanced Raman scattering created via guided oblique angle deposition on polymer. J. Phys. Chem. C 118, 4878–4884 (2014). https://doi.org/10.1021/jp410116h

    Article  Google Scholar 

  30. 30.

    K. Han, W. Kim, J. Yu, J. Lee, H. Lee, C. Gyu Woo, M. Choi, A study of pin-to-plate type spark discharge generator for producing unagglomerated nanoaerosols. J. Aerosol Sci. 52, 80–88 (2012). https://doi.org/10.1016/j.jaerosci.2012.05.002

    ADS  Article  Google Scholar 

  31. 31.

    S. Zihlmann, F. Lüönd, J.K. Spiegel, Seeded growth of monodisperse and spherical silver nanoparticles. J. Aerosol Sci. 75, 81–93 (2014). https://doi.org/10.1016/j.jaerosci.2014.05.006

    ADS  Article  Google Scholar 

  32. 32.

    M.A. El-Aal, T. Seto, M. Kumita, A.A. Abdelaziz, Y. Otani, Synthesis of silver nanoparticles film by spark discharge deposition for surface-enhanced Raman scattering. Opt. Mater. (Amst) 83, 263–271 (2018). https://doi.org/10.1016/j.optmat.2018.06.029

    ADS  Article  Google Scholar 

  33. 33.

    B.O. Meuller, M.E. Messing, D.L.J. Engberg, A.M. Jansson, L.I.M. Johansson, S.M. Norlén, N. Tureson, K. Deppert, Review of spark discharge generators for production of nanoparticle aerosols. Aerosol Sci. Technol. 46, 1256–1270 (2012). https://doi.org/10.1080/02786826.2012.705448

    ADS  Article  Google Scholar 

  34. 34.

    T. Karabacak, J.S. Deluca, P.I. Wang, G.A. Ten Eyck, D. Ye, G.C. Wang, T.M. Lu, Low temperature melting of copper nanorod arrays. J. Appl. Phys. 99, 6 (2006). https://doi.org/10.1063/1.2180437

    Article  Google Scholar 

  35. 35.

    A. Voloshko, Nanoparticle formation by means of spark discharge at atmospheric pressure, Université Jean Monnet—Saint-Etienne, 2015. https://tel.archives-ouvertes.fr/tel-01545174/document.

  36. 36.

    U. Sanyal, B.R. Jagirdar, Metal and alloy nanoparticles by amine-borane reduction of metal salts by solid-phase synthesis: atom economy and green process. Inorg. Chem. 51, 13023–13033 (2012). https://doi.org/10.1021/ic3021436

    Article  Google Scholar 

  37. 37.

    F.A. Akgul, G. Akgul, N. Yildirim, H.E. Unalan, R. Turan, Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater. Chem. Phys. 147, 987–995 (2014). https://doi.org/10.1016/j.matchemphys.2014.06.047

    Article  Google Scholar 

  38. 38.

    G. Cheng, A.R.H. Walker, Transmission electron microscopy characterization of colloidal copper nanoparticles and their chemical reactivity. Anal. Bioanal. Chem. 396, 1057–1069 (2010). https://doi.org/10.1007/s00216-009-3203-0

    Article  Google Scholar 

  39. 39.

    T. Bora, Recent developments on metal nanoparticles for SERS applications, in Noble precious met, ed. by M.S. Seehra, A.D. Bristow (IntechOpen, Rijeka, 2018), pp. 117–135. https://doi.org/10.5772/intechopen.71573

    Google Scholar 

  40. 40.

    C.B. Moore, W. Rison, J. Mathis, G. Aulich, Lightning rod improvement studies. J. Appl. Meteorol. 39, 593–609 (2000). https://doi.org/10.1175/1520-0450-39.5.593

    ADS  Article  Google Scholar 

  41. 41.

    M. Li, Z.S. Zhang, X. Zhang, K.Y. Li, X.F. Yu, Optical properties of Au/Ag core/shell nanoshuttles. Opt. Express. 16, 14288–14293 (2008). https://doi.org/10.1364/oe.16.014288

    ADS  Article  Google Scholar 

  42. 42.

    Y.J. Liu, Z.Y. Zhang, R.A. Dluhy, Y.P. Zhao, The SERS response of semiordered Ag nanorod arrays fabricated by template oblique angle deposition. J. Raman Spectrosc. 41, 1112–1118 (2010). https://doi.org/10.1002/jrs.2567

    ADS  Article  Google Scholar 

  43. 43.

    K.D. Osberg, M. Rycenga, N. Harris, A.L. Schmucker, M.R. Langille, G.C. Schatz, C.A. Mirkin, Dispersible gold nanorod dimers with sub-5 nm gaps as local amplifiers for surface-enhanced Raman scattering. Nano Lett. 12, 3828–3832 (2012). https://doi.org/10.1021/nl301793k

    ADS  Article  Google Scholar 

  44. 44.

    M.A. El-Aal, T. Seto, Surface-enhanced Raman scattering and catalytic activity studies over nanostructured Au–Pd alloy films prepared by DC magnetron sputtering. Res. Chem. Intermed. 46, 3741–3756 (2020). https://doi.org/10.1007/s11164-020-04172-1

    Article  Google Scholar 

  45. 45.

    D. Zhang, H. Yang, Gelatin-stabilized copper nanoparticles: synthesis, morphology, and their surface-enhanced Raman scattering properties. Phys. B Condens. Matter. 415, 44–48 (2013). https://doi.org/10.1016/j.physb.2013.01.041

    ADS  Article  Google Scholar 

  46. 46.

    M. Guo, Y. Zhao, F. Zhang, L. Xu, H. Yang, X. Song, Y. Bu, Reduced graphene oxide-stabilized copper nanocrystals with enhanced catalytic activity and SERS properties. RSC Adv. 6, 50587–50594 (2016). https://doi.org/10.1039/c6ra05186c

    Article  Google Scholar 

  47. 47.

    R. Li, G. Shi, Y. Wang, M. Wang, Y. Zhu, X. Sun, H. Xu, C. Chang, Decoration of Cu films on the microstructural mantis wing as flexible substrates for surface enhanced Raman scattering. Optik (Stuttg). 172, 49–56 (2018). https://doi.org/10.1016/J.IJLEO.2018.07.003

    ADS  Article  Google Scholar 

  48. 48.

    X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao, C. He, Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering. Nanoscale. 7, 17079–17087 (2015). https://doi.org/10.1039/c5nr04259c

    ADS  Article  Google Scholar 

  49. 49.

    H. Dizajghorbani-Aghdam, T.S. Miller, R. Malekfar, P.F. McMillan, SERS-active cu nanoparticles on carbon nitride support fabricated using pulsed laser ablation. Nanomaterials. 9, 1–16 (2019). https://doi.org/10.3390/nano9091223

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by JST CREST, Japan (Grant number JPMJCR18H4), by the Hosokawa Powder Technology Foundation, and Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) scholarship for Mohamed was also gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abd El-Aal.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Aal, M.A., Seto, T. & Matsuki, A. The effects of operating parameters on the morphology, and the SERS of Cu NPs prepared by spark discharge deposition. Appl. Phys. A 126, 572 (2020). https://doi.org/10.1007/s00339-020-03762-5

Download citation

Keywords

  • Cu nanostructures
  • Spark discharge
  • SERS
  • Crystal violet