Correlation between Kink effect and trapping mechanism through H1 hole trap in Al0.22Ga0.78N/GaN/SiC HEMTs by current DLTS: field effect enhancement

Abstract

A cryogenic investigation of the Kink effect with drain-source bias sweeping process during output characteristics is suggested. An exhaustive study of the field effect dependence on the emission rate from hole traps in AlGaN/GaN HEMT transistors has been realized by means of current DLTS spectroscopy (I-DLTS). We have found that the Kink effect was induced by impact ionization of electron trapped in acceptor-like deep levels with activation energies at about 0.85 eV overhead the valence band of the GaN buffer layer. Using I-DLTS method, three holes traps, labeled A, H1, and H5, have been distinguished. The H1 deep level might correspond to the carbon substituting the N site (CN) which is supposed to be the main cause of the Kink effect. The major H5 trap seems to be gallium vacancy complex (VGa–ON). For the hole trap H1, the phonon-assisted tunneling emission is the dominant mechanism for holes to escape from the trapping centers while for the H5 trap their field dependence shows a classical pure tunneling effect.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Y. Wu et al., 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Dev. Lett. 25(3), 117–119 (2004). https://doi.org/10.1109/led.2003.822667

    ADS  Article  Google Scholar 

  2. 2.

    U.K. Mishra, L. Shen, T.E. Kazior, Y. Wu, GaN-based RF power devices and amplifiers. Proc. IEEE 96(2), 287–305 (2008). https://doi.org/10.1109/jproc.2007.911060

    Article  Google Scholar 

  3. 3.

    G. Meneghesso et al., Reliability of GaN high-electron-mobility transistors: state of the art and perspectives. IEEE Trans. Dev. Mater. Reliab. 8(2), 332–343 (2008). https://doi.org/10.1109/TDMR.2008.923743

    Article  Google Scholar 

  4. 4.

    M. Faqir et al., Analysis of current collapse effect in AlGaN/GaN HEMT: experiments and numerical simulations. Microelectron. Reliab. 50(9–11), 1520–1522 (2010). https://doi.org/10.1016/j.microrel.2010.07.020

    Article  Google Scholar 

  5. 5.

    S. Saadaoui, M.M. BenSalem, M. Gassoumi, H. Maaref, C. Gaquière, Anomaly and defects characterization by I–V and current deep level transient spectroscopy of Al0.25 Ga0.75 N/GaN/SiC high electron-mobility transistors. J. Appl. Phys. 111(7), 073713 (2012). https://doi.org/10.1063/1.3702458

    ADS  Article  Google Scholar 

  6. 6.

    A. Nigam, T.N. Bhat, S. Rajamani, S.B. Dolmanan, S. Tripathy, M. Kumar, Effect of self-heating on electrical characteristics of AlGaN/ GaN HEMT on Si(111) substrate. AIP Adv. 7(8), 085015 (2017). https://doi.org/10.1063/1.4990868

    ADS  Article  Google Scholar 

  7. 7.

    G. Meneghesso, F. Rossi, G. Salviati, M.J. Uren, E. Muñoz, E. Zanoni, Correlation between kink and cathodoluminescence spectra in AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 96(26), 263512 (2010). https://doi.org/10.1063/1.3459968

    ADS  Article  Google Scholar 

  8. 8.

    I. Daumiller et al., Current instabilities in GaN-based devices. IEEE Electron Dev. Lett. 22(2), 62–64 (2001). https://doi.org/10.1109/55.902832

    ADS  Article  Google Scholar 

  9. 9.

    G. Meneghesso, M. Meneghini, C. De Santi, M. Ruzzarin, E. Zanoni, Positive and negative threshold voltage instabilities in GaN-based transistors. Microelectron. Reliab. 80, 257–265 (2018). https://doi.org/10.1016/j.microrel.2017.11.004

    Article  Google Scholar 

  10. 10.

    R. Vetury, N.Q. Zhang, S. Keller, U.K. Mishra, The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron Dev. 48(3), 560–566 (2001). https://doi.org/10.1109/16.906451

    ADS  Article  Google Scholar 

  11. 11.

    P. Moens et al., On the impact of carbon-doping on the dynamic Ron and off-state leakage current of 650 V GaN power devices, in 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hong Kong, China (2015), p. 37–40. https://doi.org/10.1109/ISPSD.2015.7123383

  12. 12.

    P. Moens et al., An industrial process for 650 V rated GaN-on-Si power devices using in-situ SiN as a gate dielectric, in 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Waikoloa, HI, USA (2014), p. 374–377. https://doi.org/10.1109/ispsd.2014.6856054

  13. 13.

    A. Tarakji et al., Mechanism of radio-frequency current collapse in GaN–AlGaN field-effect transistors. Appl. Phys. Lett. 78(15), 2169–2171 (2001). https://doi.org/10.1063/1.1363694

    ADS  Article  Google Scholar 

  14. 14.

    A.V. Vertiatchikh, L.F. Eastman, W.J. Schaff, T. Prunty, Effect of surface passivation of AlGaN∕GaN heterostructure field-effect transistor. Electron. Lett. 38(8), 388 (2002). https://doi.org/10.1049/el:20020270

    ADS  Article  Google Scholar 

  15. 15.

    J. Frenkel, On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54(8), 647–648 (1938). https://doi.org/10.1103/PhysRev.54.647

    ADS  Article  Google Scholar 

  16. 16.

    G. Vincent, A. Chantre, D. Bois, Electric field effect on the thermal emission of traps in semiconductor junctions. J. Appl. Phys. 50(8), 5484–5487 (1979). https://doi.org/10.1063/1.326601

    ADS  Article  Google Scholar 

  17. 17.

    S. Makram-Ebeid, M. Lannoo, Quantum model for phonon-assisted tunnel ionization of deep levels in a semiconductor. Phys. Rev. B 25(10), 6406–6424 (1982). https://doi.org/10.1103/physrevb.25.6406

    ADS  Article  Google Scholar 

  18. 18.

    I. Jabbari, M. Baira, H. Maaref, R. Mghaieth, C-DLTS interface defects in Al0.22Ga0.78N/GaN HEMTs on SiC: spatial location of E2 traps. Phys. E Low-Dimens. Syst. Nanostruct. 104, 216–222 (2018). https://doi.org/10.1016/j.physe.2018.07.035

    ADS  Article  Google Scholar 

  19. 19.

    G. Meneghesso, F. Zanon, M.J. Uren, E. Zanoni, Anomalous kink effect in GaN high electron mobility transistors. IEEE Electron Dev. Lett. 30, 100–102 (2009). https://doi.org/10.1109/led.2008.2010067

    ADS  Article  Google Scholar 

  20. 20.

    B. Brar, K. Boutros, R. E. DeWarnes, V. Tilak, R. Shealy, L. Eastman, Impact ionization in high performance AlGaN/GaN HEMTs, in Proceedings IEEE Lester Eastman Conference on High Performance Devices, Newark, DE, USA (2002), p. 487–491. https://doi.org/10.1109/lechpd.2002.1146791

  21. 21.

    B. Brar, H. Kroemer, Influence of impact ionization on the drain conductance in InAs-AlSb quantum well heterostructure field-effect transistors. IEEE Electron Dev. Lett. 16, 548–550 (1995). https://doi.org/10.1109/55.475583

    ADS  Article  Google Scholar 

  22. 22.

    N. Dyakonova, A. Dickens, M.S. Shur, R. Gaska, J.W. Yang, Temperature dependence of impact ionization in AlGaN–GaN heterostructure field effect transistors. Appl. Phys. Lett. 72(20), 2562–2564 (1998). https://doi.org/10.1063/1.121418

    ADS  Article  Google Scholar 

  23. 23.

    R. Cuerdo et al., The kink effect at cryogenic temperatures in deep submicron AlGaN/GaN HEMTs. IEEE Electron Dev. Lett. 30(3), 209–212 (2009). https://doi.org/10.1109/LED.2008.2011289

    ADS  Article  Google Scholar 

  24. 24.

    M. Wang, K.J. Chen, Kink effect in AlGaN/GaN HEMTs induced by drain and gate pumping. IEEE Electron Dev. Lett. 32(4), 482–484 (2011). https://doi.org/10.1109/led.2011.2105460

    ADS  Article  Google Scholar 

  25. 25.

    C.H. Lin, W.K. Wang, P.C. Lin, C.K. Lin, Y.J. Chang, Y.J. Chan, Transient pulsed analysis on GaN HEMTs at cryogenic temperatures. IEEE Electron Dev. Lett. 26(10), 710–712 (2005). https://doi.org/10.1109/LED.2005.856709

    ADS  Article  Google Scholar 

  26. 26.

    S. Saadaoui, O. Fathallah, M.M.B. Salem, C. Gaquière, H. Maaref, Deep Traps and parasitic effects in Al0.25Ga0.75N/GaN/SiC heterostructures with different schottky contact surfaces. OALib 02(08), 1–6 (2015). https://doi.org/10.4236/oalib.1101562

    Article  Google Scholar 

  27. 27.

    T. Suemitsu, T. Enoki, N. Sano, M. Tomizawa, Y. Ishii, An analysis of the kink phenomena in InAlAs/InGaAs HEMT’s using two-dimensional device simulation. IEEE Trans. Electron Dev. 45(12), 2390–2399 (1998). https://doi.org/10.1109/16.735714

    ADS  Article  Google Scholar 

  28. 28.

    Z. Wang, X. Luo, W. Yu, X. Lv, 2D Simulations of Kink phenomenon in InAlAs/InGaAs/InP HEMTs, in 2013 IEEE Int. Conf. Microw. Technol. Comput. Electromagn. (2013). https://doi.org/10.1109/ICMTCE.2013.6812445

  29. 29.

    M.H. Somerville, R. Blanchard, J.A. del Alamo, K.G. Duh, P.C. Chao, On-state breakdown in power HEMTs: measurements and modeling. IEEE Trans. Electron Dev. 46(6), 1087–1093 (1999). https://doi.org/10.1109/16.766868

    ADS  Article  Google Scholar 

  30. 30.

    M. Charfeddine, H. Belmabrouk, M.A. Zaidi, H. Maaref, 2-D theoretical model for current–voltage characteristics in AlGaN/GaN HEMT’s. J. Mod. Phys. 3(8), 881–886 (2012). https://doi.org/10.4236/jmp.2012.38115

    Article  Google Scholar 

  31. 31.

    S. G. Kirtania, M. N. A. Aadit, M. K. Alam, 3D simulation of impact ionization induced kink effect in AlGaN/GaN HEMTs: a novel split channel design with asymmetric double gate for kink suppression, in 2017 3rd Int. Conf. Electr. Inf. Commun. Technol. EICT (2017). https://doi.org/10.1109/eict.2017.8275186

  32. 32.

    S. Mao, Y. Xu, Investigation on the I–V Kink effect in large signal modeling of AlGaN/GaN HEMTs. Micromachines 9(11), 571 (2018). https://doi.org/10.3390/mi9110571

    Article  Google Scholar 

  33. 33.

    S.C. Binari et al., Trapping effects and microwave power performance in AlGaN/GaN HEMTs. IEEE Trans. Electron Dev. 48(3), 465–471 (2001). https://doi.org/10.1109/16.906437

    ADS  Article  Google Scholar 

  34. 34.

    P.B. Klein, S.C. Binari, K. Ikossi, A.E. Wickenden, D.D. Koleske, R.L. Henry, Current collapse and the role of carbon in AlGaN/GaN high electron mobility transistors grown by metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 79(21), 3527–3529 (2001). https://doi.org/10.1063/1.1418452

    ADS  Article  Google Scholar 

  35. 35.

    A.S. Brown et al., AlInAs-GaInAs HEMTs utilizing low-temperature AlInAs buffers grown by MBE. IEEE Electron Dev. Lett. 10(12), 565–567 (1989). https://doi.org/10.1109/55.43141

    ADS  Article  Google Scholar 

  36. 36.

    I. Hwang et al., Impact of channel hot electrons on current collapse in AlGaN/GaN HEMTs. IEEE Electron Dev. Lett. 34(12), 1494–1496 (2013). https://doi.org/10.1109/LED.2013.2286173

    ADS  Article  Google Scholar 

  37. 37.

    K. Yuk, G. Branner, D. McQuate, A wideband multiharmonic empirical large-signal model for high-power gan hemts with self-heating and charge-trapping effects. IEEE Trans. Microw. Theory Tech. 57, 3322–3332 (2010). https://doi.org/10.1109/tmtt.2009.2033299

    ADS  Article  Google Scholar 

  38. 38.

    C. Wang et al., An electrothermal model for empirical large-signal modeling of AlGaN/GaN HEMTs including self-heating and ambient temperature effects. IEEE Trans. Microw. Theory Tech. 62, 2878–2887 (2014). https://doi.org/10.1109/TMTT.2014.2364821

    ADS  Article  Google Scholar 

  39. 39.

    Z. Wen, Y. Xu, Q. Wu, Y. Zhang, R. Xu, B. Yan, A new compact model for AlGaN/GaN HEMTs including self-heating effects (2017). https://doi.org/10.1109/mwsym.2017.8059088

  40. 40.

    Z. Yan, G. Liu, J.M. Khan, A.A. Balandin, Graphene quilts for thermal management of high-power GaN transistors. Nat. Commun. 3, 827 (2012). https://doi.org/10.1038/ncomms1828

    ADS  Article  Google Scholar 

  41. 41.

    V.S. Volcheck, V.R. Stempitsky, Suppression of the self-heating effect in GaN HEMT by few-layer graphene heat spreading elements. J. Phys. Conf. Ser. 917, 082015 (2017). https://doi.org/10.1088/1742-6596/917/8/082015

    Article  Google Scholar 

  42. 42.

    A.Y. Polyakov et al., Neutron irradiation effects in AlGaN/GaN heterojunctions. Phys. B Condens. Matter 376–377, 523–526 (2006). https://doi.org/10.1016/j.physb.2005.12.133

    ADS  Article  Google Scholar 

  43. 43.

    J.M. Tirado, J.L. Sanchez-Rojas, J.I. Izpura, Trapping effects in the transient response of AlGaN/GaN HEMT devices. IEEE Trans. Electron Dev. 54(3), 410–417 (2007). https://doi.org/10.1109/TED.2006.890592

    ADS  Article  Google Scholar 

  44. 44.

    M. Faqir et al., Characterization and analysis of trap-related effects in AlGaN–GaN HEMTs. Microelectron. Reliab. 47(9–11), 1639–1642 (2007). https://doi.org/10.1016/j.microrel.2007.07.005

    Article  Google Scholar 

  45. 45.

    A.Y. Polyakov, I.-H. Lee, Deep traps in GaN-based structures as affecting the performance of GaN devices. Mater. Sci. Eng. R Rep. 94, 1–56 (2015). https://doi.org/10.1016/j.mser.2015.05.001

    Article  Google Scholar 

  46. 46.

    M. Matsubara, E. Bellotti, A first-principles study of carbon-related energy levels in GaN. Part I—complexes formed by substitutional/interstitial carbons and gallium/nitrogen vacancies. J. Appl. Phys. 121(19), 195701 (2017). https://doi.org/10.1063/1.4983452

    ADS  Article  Google Scholar 

  47. 47.

    T. Hashizume, S. Ootomo, H. Hasegawa, Suppression of current collapse in insulated gate AlGaN/GaN heterostructure field-effect transistors using ultrathin Al2O3 dielectric. Appl. Phys. Lett. 83(14), 2952–2954 (2003). https://doi.org/10.1063/1.1616648

    ADS  Article  Google Scholar 

  48. 48.

    U. Honda, Y. Yamada, Y. Tokuda, K. Shiojima, Deep levels in n-GaN doped with carbon studied by deep level and minority carrier transient spectroscopies. Jpn. J. Appl. Phys. 51, 04DF04 (2012). https://doi.org/10.1143/jjap.51.04df04

    Article  Google Scholar 

  49. 49.

    J. Neugebauer, C.G. Van de Walle, Gallium vacancies and the yellow luminescence in GaN. Appl. Phys. Lett. 69(4), 503–505 (1996). https://doi.org/10.1063/1.117767

    ADS  Article  Google Scholar 

  50. 50.

    T. Mattila, R.M. Nieminen, Point-defect complexes and broadband luminescence in GaN and AlN. Phys. Rev. B 55(15), 9571–9576 (1997). https://doi.org/10.1103/physrevb.55.9571

    ADS  Article  Google Scholar 

  51. 51.

    M.A. Reshchikov, H. Morkoç, Luminescence properties of defects in GaN. J. Appl. Phys. 97(6), 061301 (2005). https://doi.org/10.1063/1.1868059

    ADS  Article  Google Scholar 

  52. 52.

    I.-H. Lee et al., Deep hole traps in undoped n-GaN films grown by hydride vapor phase epitaxy. J. Appl. Phys. 115(22), 223702 (2014). https://doi.org/10.1063/1.4882715

    ADS  Article  Google Scholar 

  53. 53.

    Z.-Q. Fang, B. Claflin, D.C. Look, D.S. Green, R. Vetury, Deep traps in AlGaN/GaN heterostructures studied by deep level transient spectroscopy: effect of carbon concentration in GaN buffer layers. J. Appl. Phys. 108(6), 063706 (2010). https://doi.org/10.1063/1.3488610

    ADS  Article  Google Scholar 

  54. 54.

    Z.-Q. Fang, B. Claflin, D.C. Look, Deep traps in AlGaN/GaN heterostructure field-effect transistors studied by current-mode deep-level transient spectroscopy: influence of device location. J. Electron. Mater. 40(12), 2337–2343 (2011). https://doi.org/10.1007/s11664-011-1787-6

    ADS  Article  Google Scholar 

  55. 55.

    M. Petravic, V.A. Coleman, K.-J. Kim, B. Kim, G. Li, Defect acceptor and donor in ion-bombarded GaN. J. Vac. Sci. Technol. A Vac. Surf. Films 23(5), 1340–1345 (2005). https://doi.org/10.1116/1.1991869

    ADS  Article  Google Scholar 

  56. 56.

    O. Mitrofanov, M. Manfra, Dynamics of trapped charge in GaN/AlGaN/GaN high electron mobility transistors grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 84(3), 422–424 (2004). https://doi.org/10.1063/1.1638878

    ADS  Article  Google Scholar 

  57. 57.

    T. Wosiński, Evidence for the electron traps at dislocations in GaAs crystals. J. Appl. Phys. 65(4), 1566–1570 (1989). https://doi.org/10.1063/1.342974

    ADS  Article  Google Scholar 

  58. 58.

    V. Karpus, V.I. Perel, Multiphoton ionization of deep centers in semiconductors in an electric field. JETP 64(6), 1376 (1986)

    Google Scholar 

  59. 59.

    S.D. Ganichev, E. Ziemann, W. Prettl, I.N. Yassievich, A.A. Istratov, E.R. Weber, Distinction between the Poole–Frenkel and tunneling models of electric-fieldstimulated carrier emission from deep levels in semiconductors. Phys. Rev. B 61(15), 10361–10365 (2000). https://doi.org/10.1103/PhysRevB.61.10361

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Jabbari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jabbari, I., Baira, M. & Maaref, H. Correlation between Kink effect and trapping mechanism through H1 hole trap in Al0.22Ga0.78N/GaN/SiC HEMTs by current DLTS: field effect enhancement. Appl. Phys. A 126, 570 (2020). https://doi.org/10.1007/s00339-020-03756-3

Download citation

Keywords

  • AlGaN/GaN/SiC HEMT
  • Kink effect
  • Impact ionization
  • I-DLTS
  • Hole traps
  • Phonon-assisted tunneling