Room temperature gas sensor based on La2O3 doped CuO thin films

Abstract

In this work, undoped and lanthanum doped cupric oxide (CuO:La) nanorods structured thin films were deposited at different concentrations (CLO) on p-type silicon substrates using the spray pyrolysis technique at 350 °C. XRD, AFM, SEM, and EDX techniques were used to investigate the structural, morphological, and compositional analysis, respectively. A decrease in crystallite size was observed from 13.4 to 7.75 nm and even the peak diffraction intensity decreased with an increase in La concentration. The hexagonal structure of the La2O3 phase with poor orientation planes was observed at 7 wt% La. Amplitude parameters, grain size, and atoms distribution were discussed from AFM analysis. SEM images show a uniform distribution and homogeneous crystalline construction supported by quadrilateral pillars with nanorods-like in shape. The sensitivity, recovery, and response time for CLO thin films as room temperature NO2 sensor devices were calculated. The effect of lanthanum concentration on the sensing mechanism of CuO thin films also has been reported.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    V. Patil et al., Nanocrystalline CuO thin films for H2S monitoring: microstructural and optoelectronic characterization. J. Sens. Technol. 01(02), 36–46 (2011)

    Google Scholar 

  2. 2.

    J.M. Rzaij, I.M. Ibrahim, M.A. Alalousi, N.F. Habubi, Hydrogen sulfide sensor based on cupric oxide thin films. Optik. (Stuttg). 172, 117–126 (2018)

    ADS  Google Scholar 

  3. 3.

    L. Tian, N. Bao, A.F. Geng, H. Yu, Y. Yang, X.T. Dong, Study on room temperature gas-sensing performance of CuO film-decorated ordered porous ZnO composite by In2O3 sensitization. R. Soc. Open Sci. 5, 171788 (2018)

    ADS  Google Scholar 

  4. 4.

    K. Rajaram, E. Savarimuthu, S. Arumugam, Structural, surface morphological and electrial properties of spray pyrolysis made Cu/Cu2O composite films for different molar concentration of Cu (OAc)2. Res. J. Mater. Sci. 1(4), 18–21 (2013)

    Google Scholar 

  5. 5.

    R.H. Bari, S.B. Patil, A.R. Bari, Spray-pyrolized nanostructured CuO thin films for H2S gas sensor. Int. Nano Lett. 3(1), 2–6 (2013)

    Google Scholar 

  6. 6.

    N. Sarca, O.A. Leyl, C. Arslan, Z.Z. Öztürk, Characterization and gas sensing performances of noble metals decorated CuO nanorods. Thin Solid Film 685, 321–328 (2019)

    ADS  Google Scholar 

  7. 7.

    F. Wang et al., A highly sensitive gas sensor based on CuO nanoparticles synthetized: via a sol-gel method. RSC Adv. 6(83), 79343–79349 (2016)

    Google Scholar 

  8. 8.

    Y. Li, J. Liang, Z. Tao, J. Chen, CuO particles and plates: synthesis and gas-sensor application. Mater. Res. Bull. 43(8), 2380–2385 (2008)

    Google Scholar 

  9. 9.

    P. Samarasekara, P.G.D.C.K. Karunarathna, H.P. Weeramuni, C.A.N. Fernando, Electrical properties of spin coated Zn doped CuO films. Mater. Res. Express 5(6), 66418 (2018)

    Google Scholar 

  10. 10.

    S. Al-Amri et al., Ni doped CuO nanoparticles: structural and optical characterizations. Curr. Nanosci. 11(2), 191–197 (2014)

    Google Scholar 

  11. 11.

    S.G. Rejith, C. Krishnan, Synthesis of cadmium-doped copper oxide nanoparticles: optical and structural characterizations. Adv. Appl. Sci. Res. 4(2), 103–109 (2013)

    Google Scholar 

  12. 12.

    S. Dass, Y.S. Chaudhary, M. Agjrawap, A. Shrivastav, Nanostructured Mn-doped and undoped CuO thin films—PEC studies. Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci. A 78(2), 229–231 (2004)

    Google Scholar 

  13. 13.

    S.A. El-Molla, G.A. El-Shobaky, N.H. Amin, M.N. Hammed, S.N. Sultan, Catalytic properties of pure and K+-doped CuO/MgO system towards 2-propanol conversion. J. Mex. Chem. Soc. 57(1), 36–42 (2013)

    Google Scholar 

  14. 14.

    S. Srivastava, A. Agarwal, Influence of Co doping on structural and optical properties of CuO nanoparticles. J. Ovonic Res. 14(5), 395–404 (2018)

    Google Scholar 

  15. 15.

    K.M. Kim, H.M. Jeong, H.R. Kim, K. Il Choi, H.J. Kim, J.H. Lee, Selective detection of NO2 using Cr-doped CuO nanorods. Sens. (Switz). 12(6), 8013–8025 (2012)

    Google Scholar 

  16. 16.

    F. Zhang, A. Zhu, Y. Luo, Y. Tian, J. Yang, Y. Qin, CuO nanosheets for sensitive and selective determination of H2S with high recovery ability. J. Phys. Chem. C. 114(45), 19214–19219 (2010)

    Google Scholar 

  17. 17.

    B. Zhang, W. Fu, X. Meng, A. Ruan, P. Su, H. Yang, Synthesis of actinomorphic flower-like SnO2 nanorods decorated with CuO nanoparticles and their improved isopropanol sensing properties. Appl. Surf. Sci. 456, 586–593 (2018)

    ADS  Google Scholar 

  18. 18.

    R.C. Wang, S.N. Lin, J. Yu Liu, Li/Na-doped CuO nanowires and nanobelts: enhanced electrical properties and gas detection at room temperature. J. Alloys Compd. 696, 79–85 (2017)

    Google Scholar 

  19. 19.

    N. Can, Electrospun CuO nanofibers for room temperature volatile organic compound sensing applications. Mater. Chem. Phys. 213, 6–13 (2018)

    Google Scholar 

  20. 20.

    J.H. Lee, J.H. Kim, S.S. Kim, CuO–TiO2 p–n core–shell nanowires: sensing mechanism and p/n sensing-type transition. Appl. Surf. Sci. 448, 489–497 (2018)

    ADS  Google Scholar 

  21. 21.

    A. Rydosz, The use of copper oxide thin films in gas-sensing applications. Coatings 8(12), 425 (2018)

    Google Scholar 

  22. 22.

    J. Deng, L. Wang, Z. Lou, T. Zhang, Design of CuO-TiO2 heterostructure nanofibers and their sensing performance. J. Mater. Chem. A 2(24), 9030–9034 (2014)

    Google Scholar 

  23. 23.

    Z. Li, Y. Liu, D. Guo, J. Guo, Y. Su, Room-temperature synthesis of CuO/reduced graphene oxide nanohybrids for high-performance NO2 gas sensor. Sens. Actuators B Chem. 271, 306–310 (2018)

    Google Scholar 

  24. 24.

    L.T. Hoa, S.H. Hur, Highly sensitive NO2 sensors based on local p-n heterojunctions composed of 0D CuO nanoparticles and 1D ZnO nanorods. Phys. Status Solidi Appl. Mater. Sci. 210(6), 1213–1216 (2013)

    ADS  Google Scholar 

  25. 25.

    D.N. Oosthuizen, D.E. Motaung, H.C. Swart, In depth study on the notable room-temperature NO2 gas sensor based on CuO nanoplatelets prepared by sonochemical method: comparison of various bases. Sens. Actuators B Chem. 266, 761–772 (2018)

    Google Scholar 

  26. 26.

    M. Mullen, P. Dutta, Building selectivity for NO sensing in a NOx mixture with sonochemically prepared CuO structures. Chemosensors 4(1), 1–6 (2015)

    Google Scholar 

  27. 27.

    J.M. Rzaij, Characterization of CuO thin films for gas sensing applications. Iraqi J. Phys. 14(31), 1–12 (2016)

    ADS  Google Scholar 

  28. 28.

    P.K. Ooi et al., Characterizations of cupric oxide thin films on glass and silicon substrates by radio frequency magnetron sputtering. Sains Malays 43(4), 617–621 (2014)

    Google Scholar 

  29. 29.

    S. Suwanboon, T. Ratana, T. Ratana, Effects of Al and Mn dopant on structural and optical properties of ZnO thin film prepared by Sol-Gel route. Walailak J. Sci. Tech. 4(1), 111–121 (2007)

    Google Scholar 

  30. 30.

    M.T. Tliba et al., La-doped zno thin films prepared by spray pyrolysis withmoving nozzle: study of physical properties and adsorption ability of the copper. Dig. J. Nanomater. Biostructures 13(4), 991–1002 (2018)

    Google Scholar 

  31. 31.

    F. Zhao et al., Ferromagnetism analysis of Mn-doped CuO thin films. J. Phys. Condens. Matter 20(42), 1–5 (2008)

    Google Scholar 

  32. 32.

    A.P. Moura et al., Structure and growth mechanism of CuO plates obtained by microwave-hydrothermal without surfactants. Adv. Powder Technol. 21(2), 197–202 (2010)

    Google Scholar 

  33. 33.

    C.S. Barrett, T.B. Massalski, Structure of Metals: Crystallographic Methods, Principles and Data (Pergamon Pr., Oxford u.a., 1992)

    Google Scholar 

  34. 34.

    J.D. Rodney et al., Photo-fenton degradation of nano-structured La doped CuO nanoparticles synthesized by combustion technique. Optik. (Stuttg). 161(2), 204–216 (2018)

    ADS  Google Scholar 

  35. 35.

    N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Structural, morphological, optical, and magnetic properties of Ni-doped CuO nanostructures prepared by a rapid microwave combustion method. Mater. Sci. Semicond. Process. 17, 110–118 (2014)

    Google Scholar 

  36. 36.

    B. Rajesh Kumar, T. Subba Rao, AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Dig. J. Nanomater. Biostructures 7(4), 1881–1889 (2012)

    Google Scholar 

  37. 37.

    F.Z. Chafi, L. Bahmad, N. Hassanain, B. Fares, Characterization techniques of Fe-doped CuO thin films deposited by the Spray Pyrolysis method. Condens. Matter Mater. Sci. 30, 1–13 (2018)

    Google Scholar 

  38. 38.

    I.M. Ali, J.M. Rzaij, Q.A. Abbas, I.M. Ibrahim, H.J. Alatta, Structural, optical and sensing behavior of neodymium-doped vanadium pentoxide thin films. Iran. J. Sci. Technol. Trans. A Sci. 42(4), 2375–2386 (2018)

    Google Scholar 

  39. 39.

    I.M. Ibrahim, J.M. Rzaij, A. Ramizy, Characterization of CuPcTs/Ps for NO2 gas sensor. Dig. J. Nanomater. Biostructures 12(4), 1187–1196 (2017)

    Google Scholar 

  40. 40.

    A. Rydosz, A. Szkudlarek, Gas-sensing performance of M-doped CuO-based thin films working at different temperatures upon exposure to propane. Sensors 15(8), 20069–20085 (2015)

    Google Scholar 

  41. 41.

    A. Umar, J.H. Lee, R. Kumar, O. Al-Dossary, A.A. Ibrahim, S. Baskoutas, Development of highly sensitive and selective ethanol sensor based on lance-shaped CuO nanostructures. Mater. Des. 105, 16–24 (2016)

    Google Scholar 

  42. 42.

    J.M. Rzaij, A.M. Abass, Review on: TiO2 thin film as a metal oxide gas sensor. J. Chem. Rev. 2(2), 114–121 (2020)

    Google Scholar 

  43. 43.

    P. Shankar, J.B.B. Rayappan, Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases—a review. Sci. Lett. 4, 126 (2015)

    Google Scholar 

  44. 44.

    A.A. Yousif, M.H. Hasan, Gas sensitivity and morphologically characterized of nanostructure CdO doped In2O3 films deposited by pulsed laser deposition. J. Biosens. Bioelectron. 06(04), 4–10 (2015)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nadir F. Habubi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rzaij, J.M., Habubi, N.F. Room temperature gas sensor based on La2O3 doped CuO thin films. Appl. Phys. A 126, 560 (2020). https://doi.org/10.1007/s00339-020-03751-8

Download citation

Keywords

  • Room temperature
  • Gas sensor
  • Thin films
  • NO2
  • CuO