Dielectric and magnetic properties of dilute magnetic semiconductors Ag-doped ZnO thin films

Abstract

Ag-doped ZnO thin films are prepared by the cost-effective sol–gel dip-coating method at room temperature. The Ag dopant percentage varies between (2–10) wt%. The magnetic and dielectric properties have been studied. The dielectric and magnetic properties of ZnO are significantly tailored by the increase in the Ag doping percentage. High dielectric constant and tangent loss have been observed at low frequencies which decreases with the increase in frequency. The AC conductivity is lower in the low-frequency region but has larger values in the high-frequency region. The ferromagnetic behavior of films has been recorded at room temperature. Magnetic polarons play a pivotal role in the development of room temperature ferromagnetism in Ag-doped ZnO thin films. So, ferromagnetism in thin films is governed by bound magnetic polarons. As the doping concentration increased, the saturation magnetization decreased and coercivity increased due to the combined effect of the decrease in crystallite size, generation of large defects, and formation of bound magnetic polarons. These Ag-doped ZnO thin films are suitable for spintronics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    R.L. Hoye, D. Muñoz-Rojas, S.F. Nelson, A. Illiberi, P. Poodt, F. Roozeboom, J.L. MacManus-Driscoll, Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: reactors, doping, and devices. APL Mater. 3(4), 040701 (2015)

    ADS  Google Scholar 

  2. 2.

    N.S. Bloom, On the chemical form of mercury in edible fish and marine invertebrate tissue. Can. J. Fish. Aquat. Sci. 49(5), 1010–1017 (1992)

    MathSciNet  Google Scholar 

  3. 3.

    S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, L.A. Boatner, Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93(1), 1–13 (2003)

    ADS  Google Scholar 

  4. 4.

    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 50(3), 293–340 (2005)

    Google Scholar 

  5. 5.

    M. Haase, H. Weller, A. Henglein, Photochemistry and radiation chemistry of colloidal semiconductors 23. Electron storage on zinc oxide particles and size quantization. J. Phys. Chem. 92(2), 482–487 (1988)

    Google Scholar 

  6. 6.

    J. Jayabharathi, C. Karunakaran, V. Kalaiarasi, P. Ramanathan, Nano ZnO, Cu-doped ZnO, and Ag-doped ZnO assisted generation of light from imidazole. J. Photochem. Photobiol. A 295, 1–10 (2014)

    Google Scholar 

  7. 7.

    L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO–nanostructures, defects, and devices. Mater. Today 10(5), 40–48 (2007)

    Google Scholar 

  8. 8.

    R. Deng, B. Yao, Y.F. Li, Y. Xu, J.C. Li, B.H. Li, D.Z. Shen, Ultraviolet electroluminescence from n-ZnO/p-NiO heterojunction light-emitting diode. J. Lumin. 134, 240–243 (2013)

    Google Scholar 

  9. 9.

    C. Wang, C. Zhu, C. Lv, D. Li, X. Ma, D. Yang, Electrically pumped random lasing from hydrothermal ZnO films of large grains. Appl. Surf. Sci. 332, 620–624 (2015)

    ADS  Google Scholar 

  10. 10.

    K.L. Chopra, S. Major, D.K. Pandya, Transparent conductors—a status review. Thin Solid Films 102(1), 1–46 (1983)

    ADS  Google Scholar 

  11. 11.

    F.J. Ramos, M.C. López-Santos, E. Guillén, M.K. Nazeeruddin, M. Grätzel, A.R. Gonzalez-Elipe, S. Ahmad, Perovskite solar cells based on nanocolumnar plasma-deposited ZnO thin films. Chem. Phys. Chem. 15(6), 1148–1153 (2014)

    Google Scholar 

  12. 12.

    Y. Yan, M.M. Al-Jassim, S.H. Wei, Doping of ZnO by group-IB elements. Appl. Phys. Lett. 89(18), 181912 (2006)

    ADS  Google Scholar 

  13. 13.

    S.W. Shin, I.Y. Kim, K.S. Jeon, J.Y. Heo, G.S. Heo, P.S. Patil, J.Y. Lee, Wide band gap characteristic of quaternary and flexible Mg and Ga co-doped ZnO transparent conductive thin films. J. Asian Ceram. Soc. 1(3), 262–266 (2013)

    Google Scholar 

  14. 14.

    X. Xie, C. Mao, X. Liu, L. Tan, Z. Cui, X. Yang, K.W.K. Yeung, Tuning the bandgap of photo-sensitive polydopamine/Ag3PO4/graphene oxide coating for rapid, noninvasive disinfection of implants. ACS Central Sci. 4(6), 724–738 (2018)

    Google Scholar 

  15. 15.

    C. Levard, B.C. Reinsch, F.M. Michel, C. Oumahi, G.V. Lowry, G.E. Brown Jr., Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ. Sci. Technol. 45(12), 5260–5266 (2011)

    ADS  Google Scholar 

  16. 16.

    X. Li, S. He, X. Liu, J. Jin, H. Meng, Polymer-assisted freeze-drying synthesis of Ag-doped ZnO nanoparticles with enhanced photocatalytic activity. Ceram. Int. 45, 494–502 (2019)

    Google Scholar 

  17. 17.

    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)

    ADS  Google Scholar 

  18. 18.

    H. Katayama-Yoshida, K. Sato, T. Fukushima, M. Toyoda, H. Kizaki, V.A. Dinh, P.H. Dederichs, Theory of ferromagnetic semiconductors. Phys. Status Solidi A 204, 15 (2007)

    ADS  Google Scholar 

  19. 19.

    G.Z. Xing, J.B. Yi, D.D. Wang, L. Liao, T. Yu, Z.X. Shen, C.H.A. Huan, T.C. Sum, J. Ding, T. Wu, Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3−δ nanostructures. Phys. Rev. B 79, 174406 (2009)

    ADS  Google Scholar 

  20. 20.

    G.Z. Xing, D.D. Wang, J.B. Yi, L.L. Yang, M. Gao, M. He, J.H. Yang, J. Ding, T.C. Sum, T. Wu, Structural and electrical characteristics of high quality (100) orientated-Zn3N2 thin films grown by radio-frequency magnetron sputtering. Appl. Phys. Lett. 96, 112511 (2010)

    ADS  Google Scholar 

  21. 21.

    R. Chen, C. Zou, J. Bian, A. Sandhu, W. Gao, Microstructure and optical properties of Ag-doped ZnO nanostructures prepared by a wet oxidation doping process. Nanotechnology 22(10), 105706 (2011)

    ADS  Google Scholar 

  22. 22.

    W.J. Li, C.Y. Kong, H.B. Ruan, G.P. Qin, G.J. Huang, T.Y. Yang, Y.T. Cui, Electrical properties and Raman scattering investigation of Ag doped ZnO thin films. Solid State Commun. 152(2), 147–150 (2012)

    ADS  Google Scholar 

  23. 23.

    Y. Wei, L. Ke, J. Kong, H. Liu, Z. Jiao, X. Lu, X.W. Sun, Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles. Nanotechnology 23(23), 235401 (2012)

    ADS  Google Scholar 

  24. 24.

    A. Chelouche, D. Djouadi, H. Merzouk, A. Aksas, Influence of Ag doping on structural and optical properties of ZnO thin films synthesized by the sol-gel technique. Appl. Phys. A 115(2), 613–616 (2014)

    ADS  Google Scholar 

  25. 25.

    F. Xian, K. Miao, X. Bai, Y. Ji, F. Chen, X. Li, Characteraction of Ag-doped ZnO thin film synthesized by sol-gel method and its using in thin film solar cells. Optik-Int. J. Light Elect. Opt. 124(21), 4876–4879 (2013)

    Google Scholar 

  26. 26.

    Z.N. Kayani, M. Anwar, Z. Saddiqe, S. Riaz, S. Naseem, Biological and optical properties of sol–gel derived ZnO using different percentages of silver contents. Colloids Surf. B 171, 383–390 (2018)

    Google Scholar 

  27. 27.

    A. Kaminski, S. Das Sarma, Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002)

    ADS  Google Scholar 

  28. 28.

    P. Scherrer, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 2, 98–100 (1918)

    Google Scholar 

  29. 29.

    S. Suresh, wet chemical synthesis of Tin sulfide nanoparticles and its characterization. Int. J. Phys. Sci. 9(17), 380–385 (2014)

    Google Scholar 

  30. 30.

    S.M. Hosseini, I.A. Sarsari, P. Kameli, H. Salamati, Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. J. Alloy. Compd. 640, 408–415 (2015)

    Google Scholar 

  31. 31.

    S.C. Watawe, B.D. Sarwade, S.S. Bellad, B.D. Sutar, B.K. Chougule, Microstructure, frequency and temperature-dependent dielectric properties of cobalt-substituted lithium ferrites. J. Magn. Magn. Mater. 214(1–2), 55–60 (2000)

    ADS  Google Scholar 

  32. 32.

    Z. Haijun, L. Zhichao, M. Chenliang, Y. Xi, Z. Liangying, W. Mingzhong, Preparation and microwave properties of Co-and Ti-doped barium ferrite by citrate sol–gel process. Mater. Chem. Phys. 80(1), 129–134 (2003)

    Google Scholar 

  33. 33.

    C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    ADS  Google Scholar 

  34. 34.

    I.H. Gul, A.Z. Abbasi, F. Amin, M. Anis-ur-Rehman, A. Maqsood, Structural magnetic and electrical properties of Co1− xZnxFe2O4 synthesized by co-precipitation method. J. Magn. Magn. Mater. 311(2), 494–499 (2007)

    ADS  Google Scholar 

  35. 35.

    N. Sharma, R. Kant, V. Sharma, S. Kumar, Influence of silver dopant on morphological, dielectric and magnetic properties of ZnO nanoparticles. J. Electron. Mater. 47(7), 4098–4107 (2018)

    ADS  Google Scholar 

  36. 36.

    S.A. Ansari, A. Nisar, B. Fatma, W. Khan, A.H. Naqvi, Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gel-combustion route. Mater. Sci. Eng. B 177(5), 428–435 (2012)

    Google Scholar 

  37. 37.

    C. Fanggao, S. Guilin, F. Kun, Q. Ping, Z. Qijun, Effect of gadolinium substitution on dielectric properties of bismuth ferrite. J. Rare Earths 24(1), 273–276 (2006)

    Google Scholar 

  38. 38.

    N.K. Divya, P.U. Aparna, P.P. Pradyumnan, Dielectric properties of Er3+ doped ZnO nanocrystals. Adv. Mater. Phys. Chem. 5(08), 287 (2015)

    Google Scholar 

  39. 39.

    P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of NiFe2O4 nanoparticles and nanorods. J. Alloys Compds. 563, 6–11 (2013)

    Google Scholar 

  40. 40.

    K. Maaz, S. Karim, A. Mumtaz, S.K. Hasanain, J. Liu, J.L. Duan, Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. J. Magn. Magn. Mater. 321, 1838–1842 (2009)

    ADS  Google Scholar 

  41. 41.

    H. Perron, T. Mellier, C. Domain, J. Roques, E. Simoni, R. Drot, H. Catalette, Structural investigation and electronic properties of the nickel ferrite NiFe2O4: a periodic density functional theory approach. J. Phys. 19, 346219 (2007)

    Google Scholar 

  42. 42.

    R.B. Kamble, V. Varade, K.P. Ramesh, V. Prasad, Domain size correlated magnetic properties and electrical impedance of size dependent nickel ferrite nanoparticles. AIP Adv. 5, 017119 (2015)

    ADS  Google Scholar 

  43. 43.

    N.F. Mott, Conduction in non-crystalline materials. Philos. Mag. 19, 835–852 (1969)

    ADS  Google Scholar 

  44. 44.

    S. Das Sarma, E.H. Hwang, A. Kaminski, Temperature-dependent magnetization in diluted magnetic semiconductors. Phys. Rev. B 67, 155201 (2003)

    ADS  Google Scholar 

  45. 45.

    A.C. Durst, R.N. Bhatt, P.A. Wolff, Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors. Phys. Rev. B 65, 235205 (2002)

    ADS  Google Scholar 

  46. 46.

    A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Sol. State Sci. 13, 251–256 (2011)

    ADS  Google Scholar 

  47. 47.

    H. Yadav, N. Sinha, S. Goel, B. Kumar, Eu-doped ZnO nanoparticles for dielectric, ferroelectric and piezoelectric applications. J. Alloy. Compd. 689, 333–341 (2016)

    Google Scholar 

  48. 48.

    Z.R. Dai, Z.W. Pan, Z.L. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Fun. Mater. 13, 9 (2003)

    Google Scholar 

  49. 49.

    K. Sato, Y. Katayama, Material Design for transparent ferromagnets with ZnO based magnetic semiconductor. Jpn. J. Appl. Phys. 39, 8 (2000)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zohra Nazir Kayani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kayani, Z.N., Usman, A., Nazli, H. et al. Dielectric and magnetic properties of dilute magnetic semiconductors Ag-doped ZnO thin films. Appl. Phys. A 126, 559 (2020). https://doi.org/10.1007/s00339-020-03748-3

Download citation

Keywords

  • Ag doping
  • Magnetic properties
  • Dielectric properties
  • Spintronics