Enhanced dielectric and magnetic properties in Mn-doped bismuth ferrite multiferroic nanoceramics

Abstract

Multiferroic nanoparticles of manganese doped bismuth ferrite with the chemical formula, Bi1-xMnxFeO3, with x values of 0, 0.025, 0.05, 0.075 and 0.1, were synthesized by sol–gel autocombustion method. X-ray diffraction measurements and Rietveld structural refinements were performed on the samples to ensure the formation of rhombohedrally distorted perovskite phase for all the samples. Dielectric measurements of the samples have been carried out in a wide range of frequencies from 1 to 40 MHz and at different temperatures in the range from 30° to 450 °C. Temperature-dependent dielectric anomalies were observed and the same were attributed to structural inhomogeneities at around 150°–270 °C, and to typical free charge carrier hopping mechanisms and anomalies at around 270°–420 °C. Impedance analysis of the samples provides indirect support for the reasons discussed in the dielectric properties and the corresponding electrical conductivity behaviour in these samples. Magnetic measurements were carried out to understand the influence of Mn ions on the magnetic behaviour of the studied multiferroics. The results of all these measurements are well discussed, and they indicate a considerable enhancement in the magnetic order with Mn doping and also a decrease in the dielectric loss with an evidence magnetoelectric coupling and thus making them useful for device applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    H. Schmid, Ferroelectrics 162, 317–338 (1994)

    Article  Google Scholar 

  2. 2.

    N.A. Spaldin, M. Fiebig, Science 309(5733), 391–392 (2005)

    Article  Google Scholar 

  3. 3.

    M. Fiebig, J. Phys. D Appl. Phys. 38(8), 123–152 (2005)

    ADS  Article  Google Scholar 

  4. 4.

    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    ADS  Article  Google Scholar 

  5. 5.

    N.A. Hill, J. Phys. Chem. B 104(29), 6694 (2000)

    Article  Google Scholar 

  6. 6.

    D. Khomskii, Physics 2, 20 (2009)

    Article  Google Scholar 

  7. 7.

    Y.J. Zhang et al., J. Magn. Magn. Mater. 322, 2251 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    M. Kumar, K.L. Yadav, J. Phys. Chem. Solids. 68, 1791 (2007)

    ADS  Article  Google Scholar 

  9. 9.

    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)

    Article  Google Scholar 

  10. 10.

    M. Marzouk, H.M. Hashem, S. Soltan, A.A. Ramadan, J. Mat. Sci.: Mat. Elect. 31, 5599 (2020)

    Google Scholar 

  11. 11.

    C.-W. Nan, J. Appl. Phys. 103, 03110 (2008)

    Article  Google Scholar 

  12. 12.

    M. S. Bernardo, Bol. Soc. Esp. Ceram. Vidr. 53. 1, Enero-Febrero 1–14 (2014).

  13. 13.

    J. Silva, Integrated Ferroelectrics, 126:1, 47 (2011).

  14. 14.

    Sverre M. Selbach, Mari-Ann Einarsrud, Thomas Tybell, Tor Grande, J. Am. Ceram. Soc. 90 [11], 3430 (2007).

  15. 15.

    F. Davar, M. Salavati-Niasari, J. Alloys Compd. 509, 2487 (2011)

    Article  Google Scholar 

  16. 16.

    M. Salavati-Niasari, F. Davar, M. Farhadi, J. Sol-Gel Sci. Tech. 51, 48 (2009)

    Article  Google Scholar 

  17. 17.

    M. Salavati-Niasari, M. Farhadi-Khouzani, J. Sol-Gel Sci. Tech. 52, 321 (2009)

    Article  Google Scholar 

  18. 18.

    N. Mir, M. Salavati-Niasari, Mater. Res. Bull. 48, 1660 (2013)

    Article  Google Scholar 

  19. 19.

    Sayeed Shafayet Chowdhurya, Abu Hena MostafaKamal et al., Ceram. Int.l 43 (12), 9191 (2017).

  20. 20.

    P. Uniyal, K.L. Yadav, J. Phys. Condens. Matter. 21, 012205 (2009)

    ADS  Article  Google Scholar 

  21. 21.

    G. Khasskhoussi, Z. Abdelkafi, H. Khelifi, N. Abdelmoula, D. Mezzane, H. Khemakhem, J. Alloys Compd. 701, 43 (2017)

    Article  Google Scholar 

  22. 22.

    A.Molak, D.K.Mahato, A.Z.Szeremeta, Progress in Crystal Growth and Characterization of Materials 64 :1, 1 (2018).

  23. 23.

    T. Gao, Z. Chen, Q. Huang, F. Niu, X. Huang, L. Qin, Y. Huang, Rev. Avd. Mater. Sci. 40, 97 (2015)

    Google Scholar 

  24. 24.

    C.-H. Yang, D. Kan, I. Takeuchi, V. Nagaraj, J. Seidel, Phys. Chem. Chem. Phys. 14, 15953 (2012)

    Article  Google Scholar 

  25. 25.

    R. Gerber, G. Elbinger, J. Phys. C: Solid State Phys. 3, 1363 (1970)

    ADS  Article  Google Scholar 

  26. 26.

    B. Dhanalakshmi , K. Pratap , B. Parvatheeswara Rao , P.S.V. Subba Rao, J. Alloys Compd. 676, 193 (2016).

  27. 27.

    B. Dhanalakshmi, Pratap Kollu, B. Chandra Sekhar, B. Parvatheeswara Rao, P.S.V. Subba Rao, Ceram. Int. 43, 9272 (2017).

  28. 28.

    B. Dhana Lakshmi, O.F. Caltun, I. Dumitru, K. Pratap, B. Parvatheeswara Rao, P.S.V. Subba Rao, Materials Today: Proceedings 2, 3806 (2015).

  29. 29.

    K.K. Som et al., Phys. Rev. B 45(4), 1655 (1992)

    ADS  Article  Google Scholar 

  30. 30.

    A.T. Raghavender, N.H. Hong, J. Magn. 16, 19 (2011)

    Article  Google Scholar 

  31. 31.

    S.M. Selbach, T. Tybell, M.-A. Einarsrud, T. Grande, Chem. Mater. 21, 5176 (2009)

    Article  Google Scholar 

  32. 32.

    R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  33. 33.

    B. Dhanalakshmi, K. Pratap, B. ParvatheeswaraRao, P.S.V. SubbaRao, J. Magn. Magn. Mater. 404, 119 (2016)

    ADS  Article  Google Scholar 

  34. 34.

    B. Dhanalakshmi, PratapKollu, B.ParvatheeswaraRao, P.S.V.SubbaRao, Ceram. Int. 42, 2186 (2016).

  35. 35.

    Y. Hong et al., Appl. Phys. Lett. 116, 013103 (2020)

    ADS  Article  Google Scholar 

  36. 36.

    J. Li et al., Ceram. Int. 44, 6953 (2018)

    Article  Google Scholar 

  37. 37.

    L. Zhang, Z. Xu, L. Cao, X. Yao, Mater. Letts. 61, 1130 (2007)

    Article  Google Scholar 

  38. 38.

    Y. Li et al., ACS Appl. Mater. Interfaces. 9, 11711 (2017)

    Article  Google Scholar 

  39. 39.

    Y. Li et al., Nanoscale. 9, 8591 (2017)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Dhanalakshmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhanalakshmi, B., Sekhar, B.C., Vivekananda, K.V. et al. Enhanced dielectric and magnetic properties in Mn-doped bismuth ferrite multiferroic nanoceramics. Appl. Phys. A 126, 557 (2020). https://doi.org/10.1007/s00339-020-03745-6

Download citation

Keywords

  • Multiferroic nanomaterials
  • Sol–gel auto combustion method
  • X-ray diffraction
  • Impedance spectroscopy
  • Magnetic measurements
  • Dielectric measurements