Deep reactive ion etching of silicon using non-ICP-based equipment


Deep reactive ion etching (DRIE) technology is one of the most important technologies in the processing of microelectronic devices and microelectromechanical system. As a necessary process in semiconductor integration, it has been widely studied in the past decades. It is known that the traditional DRIE process typically uses a plasma etching reactor equipped with inductively coupled plasma (ICP) sources to generate a high-density plasma so as to achieve high aspect ratio trenches with relatively small roughness. A cryogenic temperature control unit is typically employed as well. Here, however, we use a parallel plate RIE with rather simple structure, which is not usually used for DRIE, to obtain high aspect ratio silicon etching. With no ICP sources and no sophisticated temperature control unit, the system and experiment are now much more cost effective. Through the optimization of the processing, the etching rate of silicon can reach 440 nm/min. Finally, a 45 μm deep trench is etched in silicon with good perpendicularity. This method will greatly reduce the equipment related cost, especially for those applications that do not have extremely stringent requirement on the final etching accuracy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    J.P. Booth, G. Cunge, P. Chabert et al., J. Appl. Phys. 85, 3097–3107 (1999).

    ADS  Article  Google Scholar 

  2. 2.

    F. Marty, L. Rousseau, B. Saadany et al., Microelectron. J. 36, 673–677 (2005).

    Article  Google Scholar 

  3. 3.

    F. Laermer, A. Urban, Microelectron. Eng. 67–68, 349–355 (2003).

    Article  Google Scholar 

  4. 4.

    D.G. Choi, H.K. Yu, S.G. Jang et al., J. Am. Chem. Soc. 126, 7019–7025 (2004).

    Article  Google Scholar 

  5. 5.

    C.M. Waits, B. Morgan, M. Kastantin et al., Sens. Actuators A Phys. 119, 245–253 (2005).

    Article  Google Scholar 

  6. 6.

    J.W. Bartha, J. Greschner, M. Puech et al., Microelectron. Eng. 27, 453–456 (1995).

    Article  Google Scholar 

  7. 7.

    Ü. Sökmen, A. Stranz, S. Fündling et al., Microsyst Technol. 16, 863–870 (2010).

    Article  Google Scholar 

  8. 8.

    T. Sun, J. Miao, H. Zhu et al., Int. J. Comput. Eng. Sci. 04, 319–322 (2003).

    Article  Google Scholar 

  9. 9.

    D. Humbird, D.B. Graves, Plasma Sour. Sci. Technol. 11, A191–A195 (2002).

    ADS  Article  Google Scholar 

  10. 10.

    H. Jansen, H. Gardeniers, M. Boer et al., J. Micromech. Microeng. 6, 14–28 (1996).

    ADS  Article  Google Scholar 

  11. 11.

    F. Becker, I.W. Rangelow, R. Kassing, J. Appl. Phys. 80, 56–65 (1996).

    ADS  Article  Google Scholar 

  12. 12.

    F.H. Bell, O. Joubert, G.S. Oehrlein et al., J. Vac. Sci. Technol. A Vac. Surf Films 12, 3095–3101 (1994).

    ADS  Article  Google Scholar 

  13. 13.

    T. Otto, H. Wolf, R. Streiter et al., Microelectron. Eng. 45, 377–391 (1999).

    Article  Google Scholar 

  14. 14.

    L. Sun, H. Jin, X. Ye et al., Optik. 127, 206–211 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    H.V. Jansen, J.G.E. Gardeniers, J. Elders et al., Sens. Actuators A Phys. 41, 136–140 (1994).

    Article  Google Scholar 

  16. 16.

    E. Gogolides, S. Grigoropoulos, A.G. Nassiopoulos, Microelectron. Eng. 27, 449–452 (1995).

    Article  Google Scholar 

  17. 17.

    R. D’Agostino, D.L. Flamm, J. Appl. Phys. 52, 162–167 (1981).

    ADS  Article  Google Scholar 

  18. 18.

    C.P. Demic, K.K. Chan, J. Blum, J. Vac. Sci. Technol. B 10, 1105–1110 (1992).

    Article  Google Scholar 

  19. 19.

    A.K. Paul, A.K. Dimri, R.P. Bajpai, Vacuum 68, 191–196 (2002).

    ADS  Article  Google Scholar 

  20. 20.

    H. Jansen, M. Boer, R. Legtenberg et al., J. Micromech. Microeng. 5, 115–120 (1995).

    ADS  Article  Google Scholar 

  21. 21.

    X. Wang, Y. Chen, L. Wang et al., Microelectron. Eng. 85, 1015–1017 (2008).

    Article  Google Scholar 

  22. 22.

    M.K. Hooda, M. Wadhwa, S. Verma et al., Vacuum 84, 1142–1148 (2010).

    ADS  Article  Google Scholar 

  23. 23.

    E.H. Klaassen, K. Petersen, J.M. Noworolski et al., Sens. Actuators A Phys. 52, 132–139 (1996).

    Article  Google Scholar 

  24. 24.

    P.T. Docker, P.K. Kinnell, M.C.L. Ward, J. Micromech. Microeng. 14, 941–944 (2004).

    ADS  Article  Google Scholar 

  25. 25.

    J. Ohara, Y. Takeuchi, K. Sato, J. Micromech. Microeng. 19, 0950022 (2009).

    Article  Google Scholar 

  26. 26.

    K. Ishihara, Y. Chi-Fan, A.A. Ayon et al., J. Microelectromech. Syst. 8, 403–408 (1999).

    Article  Google Scholar 

  27. 27.

    W.-S. Kim, W. Lee, H.-W. Cheong et al., J. Korean Phys. Soc. 65, 1399–1403 (2014).

    ADS  Article  Google Scholar 

Download references


We thank National Natural Science Foundation of China (11674016) and National Key R&D Program of China (2018YFA0209004, 2017YFB0403102) for their financial supports.

Author information



Corresponding author

Correspondence to Jie Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Nie, J., Li, D. et al. Deep reactive ion etching of silicon using non-ICP-based equipment. Appl. Phys. A 126, 540 (2020).

Download citation


  • Deep reactive ion etching
  • Silicon
  • Etching rate
  • Inductively coupled plasma