Frequency and temperature dependence of dielectric properties and capacitance–voltage in GO/TiO2/n-Si MOS device

Abstract

Dielectric properties and capacitance–voltage of GO/TiO2/n-Si junction were investigated in frequency range 10–2 × 107 Hz and temperature (233–363 K). Reliance of \(\varepsilon^{\prime}\), \(\varepsilon^{\prime\prime}\), tanδ,, , impedance, and ac conductivity on frequency and temperature were studied. From results, it is found that \(\varepsilon^{\prime}\) increases with increasing frequency at low-frequency region, while that it decreases at high frequencies. \(\varepsilon^{\prime\prime}\) decreases with frequency (f) increment in the range 10–56 Hz and 1619–12195 Hz. It is observed the decrement of tanδ with increasing frequency in higher range 1,355,210–2 × 107 Hz. Real part of electric modulus () reduces with increment frequency. Conductivity rises with rising temperature. Moreover, activation energy (Ea) values decrease with increasing f then increase at higher f. Different parameters, such as carrier density, built-in potential, and barrier height, were derived from the reverse bias C−2–V curves. It is found that, built-in-voltage (Vbi), barrier height (φb), and Fermi energy (EF) increase with increasing temperature. Moreover, donor concentration (ND) and image force barrier lowering (∆φb) decrease with temperature increment. In addition, series resistance (Rs) decreases with temperature and frequency increment. In addition, this MOS structure GO/TiO2/n-Si works as a device, and by controlling the temperature, frequency, and voltage, the required properties from this device can be adjusted to make it suitable for any required applications; this is obvious from investigated dielectric properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    A.M. Neagu, L.P. Curecheriu, A. Cazacu, L. Mitoseriu, Compos. B 66, 109 (2014)

    Google Scholar 

  2. 2.

    O. Çiçek, H.U. Tecimer, S.O. Tan, H. Tecimer, I. Orak, S. Altındal, Compos. B 113, 14 (2017)

    Google Scholar 

  3. 3.

    S.S. Fouad, G.B. Sakr, I.S. Yahia, D.M. Abdel-Basset, F. Yakuphanoglu, Phys. B 415, 82 (2013)

    ADS  Google Scholar 

  4. 4.

    M. Rahimian, M. Fathipour, Mater. Sci. Semicond. Process. 63, 142 (2017)

    Google Scholar 

  5. 5.

    V. Mann, V. Rastogi, Opt. Comm. 387, 202 (2017)

    ADS  Google Scholar 

  6. 6.

    Y.S. Asar, T. Asar, Ş. Altındal, S. Özçelik, Philos. Mag. 95, 2885 (2015)

    ADS  Google Scholar 

  7. 7.

    Ç. Bilkan, Ş. Altındal, Y. Azizian-Kalandaragh, Phys. B: Condens. Matter 515, 28 (2017)

    ADS  Google Scholar 

  8. 8.

    A. Nikravan, Y. Badali, Ş. Altındal, I. Uslu, I. Orak, J. Electron. Mater. 46, 5728 (2017)

    ADS  Google Scholar 

  9. 9.

    S. Chand, J. Kumar, Appl. Phys. A. 63, 171 (1996)

    ADS  Google Scholar 

  10. 10.

    Y. Masuda, S. Ieda, K. Koumoto, Langmuir 18, 4415 (2003)

    Google Scholar 

  11. 11.

    S. Sonmezoglu, S. Akin, Sens. Actuat. A Phys. 199, 18 (2013)

    Google Scholar 

  12. 12.

    O. Carp, Prog. Solid State Chem. 32, 33 (2004)

    ADS  Google Scholar 

  13. 13.

    A. Ashery, H. Shaban, S.A. Gad, B.A. Mansour, Mater. Sci. Semicond. Process. 114, 105070 (2020)

    Google Scholar 

  14. 14.

    M. Chandra Sekhar, P. Kondaiah, S.V. Jagadeesh Chandra, G. Mohan Rao, S. Uthanna, Appl. Surf. Sci. 258, 1789 (2011)

    ADS  Google Scholar 

  15. 15.

    M. Chandra Sekhar, P. Kondaiah, S.V. Jagadeesh Chandra, G. Mohan Rao, S. Uthanna, Surf. Interface Anal. 44, 1299 (2012)

    Google Scholar 

  16. 16.

    J.Y. Kim, H.S. Jung, J.H. No, J.R. Kim, K.S. Hong, J. Electroceram. 16, 447 (2006)

    Google Scholar 

  17. 17.

    F. Jin, H. Tong, L. Shen, K. Wang, P.K. Chu, Mater. Chem. Phys. 100, 31 (2006)

    Google Scholar 

  18. 18.

    P. Vitanov, A. Harizanova, T. Ivanova, J. Phys: Conf. Ser. 356, 012041 (2012)

    Google Scholar 

  19. 19.

    S.P. Szu, C.Y. Lin, Mater. Chem. Phys. 82, 295 (2003)

    Google Scholar 

  20. 20.

    D. Maurya, L. Kumar, Shripal, J. Phys. Chem. Solids. 66, 1614 (2005)

    ADS  Google Scholar 

  21. 21.

    A.A. Sattar, S.A. Rahman, Phys. Stat. Sol. A 200(2), 415 (2003)

    ADS  Google Scholar 

  22. 22.

    S.A. Nouh, S.A. Gaafar, H.M. Eissa, Phys. Stat. Sol. A 175, 699 (1999)

    ADS  Google Scholar 

  23. 23.

    C. Fanggao, G.A. Saunders, E.F. Lambson, R.N. Hampton, G. Carini, G.D. Marco, M. Lanza, J. Appl. Poly. Sci. 34, 425 (1996)

    Google Scholar 

  24. 24.

    M.R. RangaRaju, R.N.P. Choudhary, S. Ram, Phys. Stat. Sol. B 239(2), 480 (2003)

    ADS  Google Scholar 

  25. 25.

    A. Chelkowski, Dielectric Physics (Elsevier, Amsterdam, 1980)

    Google Scholar 

  26. 26.

    C.P. Symth, Dielectric Behavior and Structure (McGraw-Hill, New York, 1955)

    Google Scholar 

  27. 27.

    P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    Google Scholar 

  28. 28.

    A. Kaya, Ö. Vural, H. Tecimer, S. Demirezen, Ş. Altındal, Curr. Appl. Phys. 14, 322 (2014)

    ADS  Google Scholar 

  29. 29.

    S. Fang, C.H. Ye, T. Xie, Z.Y. Wong, J.W. Zhao, L.D. Zhang, Appl. Phys. Lett. 88, 013101 (2006)

    ADS  Google Scholar 

  30. 30.

    B.H. Venkataraman, K.B.R. Varma, J. Mater. Sci.: Mater. Electron. 16(6), 335 (2005)

    Google Scholar 

  31. 31.

    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1993)

    Google Scholar 

  32. 32.

    K. Kumari, K. Prasad, R.N.P. Choudhary, J. Alloys Compd. 453(1–172), 325 (2008)

    Google Scholar 

  33. 33.

    A. Omri, M. Bejar, E. Dhahri, M. Es-Souni, M.A. Valente, M.P.F. Graça, L.C. Costa, J. Alloys Compd. 536, 173 (2012)

    Google Scholar 

  34. 34.

    Y.J. Hsiao, Y.H. Chang, T.H. Fang, Y.S. Chang, Appl. Phys. Lett. 87, 142906 (2005)

    ADS  Google Scholar 

  35. 35.

    K. Jawahar, R.N.P. Choudhary, Solid State Commun. 142, 449 (2007)

    ADS  Google Scholar 

  36. 36.

    A. Prasad, A. Basu, Mater. Lett. 66, 1 (2012)

    Google Scholar 

  37. 37.

    İ. Dökme, Ş. Altındal, IEEE Trans. Electron. Dev. 58, 4042 (2011)

    ADS  Google Scholar 

  38. 38.

    S.A. Awan, R.D. Gould, Thin Solid Films 423, 267 (2003)

    ADS  Google Scholar 

  39. 39.

    A. Tatarŏglu, Microelectron. Eng. 83, 2551 (2006)

    Google Scholar 

  40. 40.

    A. Tatarŏglu, S. Altındal, Nucl. Instr. Meth. B 254, 113 (2007)

    ADS  Google Scholar 

  41. 41.

    B. Akkal, Z. Benamara, B. Gruzza, L. Biduex, Vacuum 57, 219 (2000)

    Google Scholar 

  42. 42.

    K. Prabakar, S.K. Narayandass, D. Mangalaraj, Phys. Stat. Sol. (a) 199, 507 (2003)

    ADS  Google Scholar 

  43. 43.

    K.M.M. Abdel, M.Y. Elzayat, T.R. Hammad, A.I. Aboud, H. Abdelmonem, Phys. Scr. 83, 035705 (2011)

    ADS  Google Scholar 

  44. 44.

    A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, L.C. Costa, J. Alloys Compd. 653, 506 (2015)

    Google Scholar 

  45. 45.

    M.S. Mattsson, G.A. Niklasson, K. Forsgren, A. Harsta, J. Appl. Phys. 85(4), 2185 (1999)

    ADS  Google Scholar 

  46. 46.

    K. Prabakar, S.K. Narayandass, D. Mangalaraj, Phys. Status Solidi A 199(3), 507 (2003)

    ADS  Google Scholar 

  47. 47.

    A.A. Sattar, S.A. Rahman, Phys. Status Solidi A. 200(2), 415 (2003)

    ADS  Google Scholar 

  48. 48.

    A.S. Md, S. Rahman, M.H. Islam, C.A. Hogarth, Int. J. Electron. 62(2), 167 (1987)

    Google Scholar 

  49. 49.

    R.S. Sharma, N. Mehta, A. Kumar, Chin. Phys. Lett. 25, 4079 (2008)

    ADS  Google Scholar 

  50. 50.

    A. Gümüş, A. Türüt, N. Yalçın, J. Appl. Phys. 91, 245 (2002)

    ADS  Google Scholar 

  51. 51.

    D.K. Schroder, Semiconductor material and device characterization, 3rd edn. (Wiley, Canada, 2006)

    Google Scholar 

  52. 52.

    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  53. 53.

    M. Sharma, S.K. Tripathi, J. Appl. Phys. 112, 024521 (2012)

    ADS  Google Scholar 

  54. 54.

    S. Zeyrek, S. Altındal, H. Yuzer, M.M. Bulbul, Appl. Surf. Sci. 252, 2999 (2006)

    ADS  Google Scholar 

  55. 55.

    E.H. Nicollian, J.R. Brews, MOS (metal/oxide/semiconductor) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  56. 56.

    A. Tataroglu, S. Altindal, S. Karadeniz, N. Tugluoglu, Microelectron J. 34, 1043 (2003)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Gad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ashery, A., Gad, S.A. & Shaban, H. Frequency and temperature dependence of dielectric properties and capacitance–voltage in GO/TiO2/n-Si MOS device. Appl. Phys. A 126, 547 (2020). https://doi.org/10.1007/s00339-020-03729-6

Download citation

Keywords

  • GO/TiO2/si MOS junction
  • Dielectric properties
  • AC conductivity
  • Capacitance–voltage
  • Frequency and temperature effects