Structural, elastic, electronic, and thermoelectric properties of chalcopyrite B2BiN alloys: a first-principles study


In this paper, we have investigated the structural, elastic, electronic, and thermoelectric properties of chalcopyrite B2BiN using the first-principles calculations via the density functional theory (DFT) implemented in wien2k code. We negative the energy formation founded indicates the stability of these alloys in ambient conditions. The obtained results predict that the studied system shows a brittle and stiff behavior based on the analysis of the elastic constants and their derived parameters such as Young’s modulus (220–240 GPa), Poisson’s ratio (0.163–0.188), and the Debye temperature (503.33 K). Moreover, the compound has an indirect bandgap of 1.37 eV, which is close to the ideal value of 1.40 eV for the solar light absorber. Its merit factor (ZT) varies from 0.96 and 0.92 for temperatures ranging between 300 and 900 K and a high value of the Seebeck coefficient (S) of 2750 μV/K at 300; these two important parameters allow the B2BiN structure to have an improvement in thermoelectric performance and can be a potential candidate for solar panel devices. To the best of our knowledge and according to the researches available in the literature, there are no experimental and theoretical studies on elastic and thermoelectric properties of B2BiN.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    J. Yang, L. Xi, W. Qiu, L. Wu, X. Shi, L. Chen, J. Yang, W. Zhang, C. Uher, D.J. Singh, NPJ Comput. Mater. 2, 15015 (2016).

    ADS  Article  Google Scholar 

  2. 2.

    S. Fahad, G. Murtaza, T. Ouahrani, R. Khenata, M. Yousaf, S.B. Omran, S. Mohammad, J. Alloy. Compd. 646, 211–222 (2015).

    Article  Google Scholar 

  3. 3.

    L. Xue, B. Xu, D. Zhao, L. Yi, Intermetallics 55, 204–209 (2014).

    Article  Google Scholar 

  4. 4.

    A. Martí, D.F. Marrón, A. Luque, J. Appl. Phys. 103, 073706 (2008).

    ADS  Article  Google Scholar 

  5. 5.

    T. Maeda, T. Takeichi, T. Wada, Phys. Stat. Sol. A 203, 2634–2638 (2006).

    ADS  Article  Google Scholar 

  6. 6.

    B. Eisener, M. Wagner, D. Wolf, G. Muller, J. Cryst. Growth 198–199, 32 (1999).

    Article  Google Scholar 

  7. 7.

    R.H. Wentorf Jr., R.C. Devries, F.P. Bundy, Sintered super-hard materials. Science 208, 873 (1980).

    ADS  Article  Google Scholar 

  8. 8.

    O. Mishima, J.J. Pouch, S.A. Alterovitz (seds.), Synthesis and Properties of Boron Nitride, vol. 54–55 (Trans Tech, Aedermannsdorf, 1990), p. 313.

  9. 9.

    S.Q. Wangand, H.Q. Ye, Phys. Stat. Sol. (B) 240(1), 45–54 (2003).

    ADS  Article  Google Scholar 

  10. 10.

    R.H. Wentorf, Cubic form of boron nitride. J. Chem. Phys. 26, 956 (1957).

    ADS  Article  Google Scholar 

  11. 11.

    B.G. Yalcin, Appl. Phys. A 122, 456 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    A. Belabbes, A. Zaoui, and M. Ferhat, J. Phys. Condens. Matter 20, 415221 (2008).,

  13. 13.

    Y. Shimotsuma, T. Sei, M. Mori, M. Sakakura, K. Miura, Selforganization of polarization-dependent periodic nanostructures embedded in III–V semiconductor materials. Appl. Phys. A 122, 159 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    M. Ustundag, M. Aslan, B.G. Yalcin, The first-principles study on physical properties and phase stability of Boron-V (BN, BP, BAs, BSb, and BBi) compounds. Comput. Mater. Sci. 81, 471–477 (2014).

    Article  Google Scholar 

  15. 15.

    J.E. Jaffe, A. Zunger, Phys Rev. B. 29, 1882–1906 (1984).

    ADS  Article  Google Scholar 

  16. 16.

    S.-H. Wei, L.G. Ferreira, J.E. Bernard, A. Zunger, Phys. Rev. B 42, 9622–9649 (1990).

    ADS  Article  Google Scholar 

  17. 17.

    D. Teng, J. Shen, K.E. Newman, B.-L. Gu, J. Phys. Chem. Solids 30, 1109–1128 (1991).

    Article  Google Scholar 

  18. 18.

    S.C. Abrahams, J.L. Bernstein, J. Chem. Phys. 61, 1140 (1974).

    ADS  Article  Google Scholar 

  19. 19.

    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964).

    ADS  Article  Google Scholar 

  20. 20.

    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Wien2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Rev. Ed. WIEN2K 13.1 (Vienna University of Technology, Austria, 2001).

  21. 21.

    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    ADS  Article  Google Scholar 

  22. 22.

    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 102, 039902E (2009).

    ADS  Article  Google Scholar 

  23. 23.

    H. Peng, J.P. Perdew, Phys. Rev. B 95, 081105 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    ADS  Article  Google Scholar 

  25. 25.

    G.K.H. Madsen, J. Am. Chem. Soc. 128, 12140 (2006).

    Article  Google Scholar 

  26. 26.

    F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944).

    ADS  Article  Google Scholar 

  27. 27.

    M. Born, On the stability of crystal lattices. Proc. Camb. Philos. Soc. 36, 160 (1940).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    F. Mouhat, F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104 (2014).

    ADS  Article  Google Scholar 

  29. 29.

    R. Hill, Proc Phys. Soc. 65, 349 (1952).

    ADS  Article  Google Scholar 

  30. 30.

    S.F. Pugh, Philos. Mag. 45, 823 (1953).

    Article  Google Scholar 

  31. 31.

    W. Voigt, Lehrbuch der KristallpysikTaubner, p. 29. Leipzig (1928)

  32. 32.

    R. Reuss, "Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle," Zeitschrift fur AngewandteMathematik und Mechanik9, (1929)49.

  33. 33.

    S.I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008).

    ADS  Article  Google Scholar 

  34. 34.

    M. Besse, Étude d'un demi-métal: Caractérisation du matériau massif et croissance des couches minces Sr2FeMoO6. Thèse doctorat. Unité Mixte de Recherche CNRS/Thales (2003). Thisis M Besse—2003

  35. 35.

    Y.P. Varshni, Physica 34, 149–154 (1967).

    ADS  Article  Google Scholar 

  36. 36.

    K. Raleva, D. Vasileska, S.M. Goodnick, M. Nedjalkov, Modeling thermal effects in nanodevices. IEEE Trans. Electron Devices 55(6), 1306–1316 (2008).

    ADS  Article  Google Scholar 

  37. 37.

    H. Shaoting, Exploration of Si/SiGe quantum well thin films Thermoelectric Devices Using TCAD Simulation (Electrical and Microelectronics Engineering Department Rochester Institute of Technology, 2012)

  38. 38.

    H.C. Kandpal, G.H. Fecher, C. Felser, J. Phys. D Appl. Phys. 40, 1507 (2007).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohamed Berber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tab, S., Boudali, A., Berber, M. et al. Structural, elastic, electronic, and thermoelectric properties of chalcopyrite B2BiN alloys: a first-principles study. Appl. Phys. A 126, 544 (2020).

Download citation


  • First-principles computation
  • Chalcopyrite B2BiN
  • GGA-PBEsol approximation
  • TB-mBJ
  • Thermoelectric