Structural, elastic, electronic, and thermoelectric properties of chalcopyrite B2BiN alloys: a first-principles study

Abstract

In this paper, we have investigated the structural, elastic, electronic, and thermoelectric properties of chalcopyrite B2BiN using the first-principles calculations via the density functional theory (DFT) implemented in wien2k code. We negative the energy formation founded indicates the stability of these alloys in ambient conditions. The obtained results predict that the studied system shows a brittle and stiff behavior based on the analysis of the elastic constants and their derived parameters such as Young’s modulus (220–240 GPa), Poisson’s ratio (0.163–0.188), and the Debye temperature (503.33 K). Moreover, the compound has an indirect bandgap of 1.37 eV, which is close to the ideal value of 1.40 eV for the solar light absorber. Its merit factor (ZT) varies from 0.96 and 0.92 for temperatures ranging between 300 and 900 K and a high value of the Seebeck coefficient (S) of 2750 μV/K at 300; these two important parameters allow the B2BiN structure to have an improvement in thermoelectric performance and can be a potential candidate for solar panel devices. To the best of our knowledge and according to the researches available in the literature, there are no experimental and theoretical studies on elastic and thermoelectric properties of B2BiN.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    J. Yang, L. Xi, W. Qiu, L. Wu, X. Shi, L. Chen, J. Yang, W. Zhang, C. Uher, D.J. Singh, NPJ Comput. Mater. 2, 15015 (2016). https://doi.org/10.1038/npjcompumats.2015.15

    ADS  Article  Google Scholar 

  2. 2.

    S. Fahad, G. Murtaza, T. Ouahrani, R. Khenata, M. Yousaf, S.B. Omran, S. Mohammad, J. Alloy. Compd. 646, 211–222 (2015). https://doi.org/10.1016/j.jallcom.2015.06.026

    Article  Google Scholar 

  3. 3.

    L. Xue, B. Xu, D. Zhao, L. Yi, Intermetallics 55, 204–209 (2014). https://doi.org/10.1016/j.intermet.2014.08.005

    Article  Google Scholar 

  4. 4.

    A. Martí, D.F. Marrón, A. Luque, J. Appl. Phys. 103, 073706 (2008). https://doi.org/10.1063/1.2901213

    ADS  Article  Google Scholar 

  5. 5.

    T. Maeda, T. Takeichi, T. Wada, Phys. Stat. Sol. A 203, 2634–2638 (2006). https://doi.org/10.1002/pssa.200669539

    ADS  Article  Google Scholar 

  6. 6.

    B. Eisener, M. Wagner, D. Wolf, G. Muller, J. Cryst. Growth 198–199, 32 (1999). https://doi.org/10.1016/S0022-0248(98)01195-6

    Article  Google Scholar 

  7. 7.

    R.H. Wentorf Jr., R.C. Devries, F.P. Bundy, Sintered super-hard materials. Science 208, 873 (1980). https://doi.org/10.1126/science.208.4446.873

    ADS  Article  Google Scholar 

  8. 8.

    O. Mishima, J.J. Pouch, S.A. Alterovitz (seds.), Synthesis and Properties of Boron Nitride, vol. 54–55 (Trans Tech, Aedermannsdorf, 1990), p. 313. https://doi.org/10.4028/www.scientific.net/MSF.54-55.313

  9. 9.

    S.Q. Wangand, H.Q. Ye, Phys. Stat. Sol. (B) 240(1), 45–54 (2003). https://doi.org/10.1002/pssb.200301861

    ADS  Article  Google Scholar 

  10. 10.

    R.H. Wentorf, Cubic form of boron nitride. J. Chem. Phys. 26, 956 (1957). https://doi.org/10.1063/1.1745964

    ADS  Article  Google Scholar 

  11. 11.

    B.G. Yalcin, Appl. Phys. A 122, 456 (2016). https://doi.org/10.1007/s00339-016-0003-1

    ADS  Article  Google Scholar 

  12. 12.

    A. Belabbes, A. Zaoui, and M. Ferhat, J. Phys. Condens. Matter 20, 415221 (2008). https://doi.org/10.1007/s00339-016-0003-1, https://doi.org/10.1088/0953-8984/20/41/415221

  13. 13.

    Y. Shimotsuma, T. Sei, M. Mori, M. Sakakura, K. Miura, Selforganization of polarization-dependent periodic nanostructures embedded in III–V semiconductor materials. Appl. Phys. A 122, 159 (2016). https://doi.org/10.1007/s00339-016-9686-6

    ADS  Article  Google Scholar 

  14. 14.

    M. Ustundag, M. Aslan, B.G. Yalcin, The first-principles study on physical properties and phase stability of Boron-V (BN, BP, BAs, BSb, and BBi) compounds. Comput. Mater. Sci. 81, 471–477 (2014). https://doi.org/10.1016/j.commatsci.2013.08.056

    Article  Google Scholar 

  15. 15.

    J.E. Jaffe, A. Zunger, Phys Rev. B. 29, 1882–1906 (1984). https://doi.org/10.1103/PhysRevB.29.1882

    ADS  Article  Google Scholar 

  16. 16.

    S.-H. Wei, L.G. Ferreira, J.E. Bernard, A. Zunger, Phys. Rev. B 42, 9622–9649 (1990). https://doi.org/10.1103/PhysRevB.42.9622

    ADS  Article  Google Scholar 

  17. 17.

    D. Teng, J. Shen, K.E. Newman, B.-L. Gu, J. Phys. Chem. Solids 30, 1109–1128 (1991). https://doi.org/10.1016/0022-3697(91)90044-Z

    Article  Google Scholar 

  18. 18.

    S.C. Abrahams, J.L. Bernstein, J. Chem. Phys. 61, 1140 (1974). https://doi.org/10.1063/1.1679891

    ADS  Article  Google Scholar 

  19. 19.

    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964). https://doi.org/10.1103/PhysRev.136.B864

    ADS  Article  Google Scholar 

  20. 20.

    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Wien2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Rev. Ed. WIEN2K 13.1 (Vienna University of Technology, Austria, 2001).

  21. 21.

    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    ADS  Article  Google Scholar 

  22. 22.

    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 102, 039902E (2009). https://doi.org/10.1103/PhysRevLett.100.136406

    ADS  Article  Google Scholar 

  23. 23.

    H. Peng, J.P. Perdew, Phys. Rev. B 95, 081105 (2017). https://doi.org/10.1103/PhysRevB.95.081105

    ADS  Article  Google Scholar 

  24. 24.

    F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

    ADS  Article  Google Scholar 

  25. 25.

    G.K.H. Madsen, J. Am. Chem. Soc. 128, 12140 (2006). https://doi.org/10.1021/ja062526a

    Article  Google Scholar 

  26. 26.

    F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944). https://doi.org/10.1073/pnas.30.9.244

    ADS  Article  Google Scholar 

  27. 27.

    M. Born, On the stability of crystal lattices. Proc. Camb. Philos. Soc. 36, 160 (1940). https://doi.org/10.1017/S0305004100017138

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    F. Mouhat, F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104 (2014). https://doi.org/10.1103/PhysRevB.90.224104

    ADS  Article  Google Scholar 

  29. 29.

    R. Hill, Proc Phys. Soc. 65, 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    ADS  Article  Google Scholar 

  30. 30.

    S.F. Pugh, Philos. Mag. 45, 823 (1953). https://doi.org/10.1080/14786440808520496

    Article  Google Scholar 

  31. 31.

    W. Voigt, Lehrbuch der KristallpysikTaubner, p. 29. Leipzig (1928)

  32. 32.

    R. Reuss, "Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle," Zeitschrift fur AngewandteMathematik und Mechanik9, (1929)49. https://doi.org/10.1002/zamm.19290090104

  33. 33.

    S.I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008). https://doi.org/10.1103/PhysRevLett.101.055504

    ADS  Article  Google Scholar 

  34. 34.

    M. Besse, Étude d'un demi-métal: Caractérisation du matériau massif et croissance des couches minces Sr2FeMoO6. Thèse doctorat. Unité Mixte de Recherche CNRS/Thales (2003). Thisis M Besse—2003

  35. 35.

    Y.P. Varshni, Physica 34, 149–154 (1967). https://doi.org/10.1016/0031-8914(67)90062-6

    ADS  Article  Google Scholar 

  36. 36.

    K. Raleva, D. Vasileska, S.M. Goodnick, M. Nedjalkov, Modeling thermal effects in nanodevices. IEEE Trans. Electron Devices 55(6), 1306–1316 (2008). https://doi.org/10.1109/TED.2008.921263

    ADS  Article  Google Scholar 

  37. 37.

    H. Shaoting, Exploration of Si/SiGe quantum well thin films Thermoelectric Devices Using TCAD Simulation (Electrical and Microelectronics Engineering Department Rochester Institute of Technology, 2012)

  38. 38.

    H.C. Kandpal, G.H. Fecher, C. Felser, J. Phys. D Appl. Phys. 40, 1507 (2007). https://doi.org/10.1088/0022-3727/40/6/S01

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed Berber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tab, S., Boudali, A., Berber, M. et al. Structural, elastic, electronic, and thermoelectric properties of chalcopyrite B2BiN alloys: a first-principles study. Appl. Phys. A 126, 544 (2020). https://doi.org/10.1007/s00339-020-03725-w

Download citation

Keywords

  • First-principles computation
  • Chalcopyrite B2BiN
  • GGA-PBEsol approximation
  • TB-mBJ
  • Thermoelectric