The effect of neutron radiation on the yield stress of the Bushehr reactor clad

Abstract

In fission reactors, neutron radiation is the main reason for the displacement of atoms in the crystalline lattice of the material. In this study, this damage is investigated on the fuel clad of the Bushehr reactor, which is Zr + 1%Nb. The MCNPX code is used to simulate the core of the reactor and find the highest neutron flux in the core of the reactor. Both the SRIM and SPECTER codes are used to study the neutron interaction with matter. The damage rate of the SRIM code is calculated in full cascade and quick damage modes, calculated as 2.05E−06 (dpa/s) and 1.06E−06 (dpa/s), respectively. Also, the damage rate in the SPECTER code is 1.0193E−06 (dpa/s), and the result has been compared with the SRIM code results. Using the calculated displacement per atom (dpa), the yield stress of the material, which is the resistance to the stresses, and the electrical resistivity of the material are calculated for 3 years of reactor operation. Both factors have increased over time, and the fuel clad lost its original function.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    S. J. Zinkle, N. Hashimoto, Y. Matsukawa, R. E. Stoller, Y. N. Osetsky, MRS Online Proceedings Library Archive. 792, (2003)

  2. 2.

    G. Lucas, J. Nucl. Mater. 206, 287–305 (1993)

    ADS  Google Scholar 

  3. 3.

    V.I. Levitas, A.M. Roy, D.L. Preston, Phys. Rev. B 88, 054113 (2013)

    ADS  Google Scholar 

  4. 4.

    V.I. Levitas, A.M. Roy, Phys. Rev. B 91, 174109 (2015)

    ADS  Google Scholar 

  5. 5.

    V.I. Levitas, A.M. Roy, Acta Mater. 105, 244–257 (2016)

    Google Scholar 

  6. 6.

    P. Mukherjee, P. Barat, S. Bandyopadhyay, N. Gayathri, M. Bhattacharya, Role of accelerators in studying radiation damage in nuclear structural materials (IAEA, Kolkata, 2009)

    Google Scholar 

  7. 7.

    A. Holmes-Siedle, L. Adams, Handbook of radiation effects (IAEA, New York, 1993)

    Google Scholar 

  8. 8.

    A.Y. Konobeyev, U. Fischer, Y.A. Korovin, S. Simakov, Nucet. 3, 169–175 (2017)

    Google Scholar 

  9. 9.

    D. Saad, H. Benkharfia, M. Izerrouken, A.A. Benyahia, H. Ait-Abderrahim, Nucl Sci Tech. 28, 162 (2017)

    Google Scholar 

  10. 10.

    G.S. Was, Fundamentals of radiation materials science: metals and alloys (Springer, Berlin, 2016)

    Google Scholar 

  11. 11.

    R.C. Ewing, A. Meldrum, L. Wang, W.J. Weber, L.R. Corrales, Rev Miner. Geochem. 53, 387–425 (2003)

    Google Scholar 

  12. 12.

    S.F.G. Ardekani, K. Hadad, Prog. Nucl. Energ. 99, 96–102 (2017)

    Google Scholar 

  13. 13.

    K. Nordlund, A.E. Sand, F. Granberg, S.J. Zinkle, R. Stoller, R.S. Averback, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, Primary Radiation Damage in Materials. Review of Current Understanding and Proposed New Standard Displacement Damage Model to Incorporate in Cascade Defect Production Efficiency and Mixing Effects (Organisation for Economic Co-Operation and Development, Paris, 2015)

    Google Scholar 

  14. 14.

    S.I. Choi, J.H. Kim, NET. 45, 385–392 (2013)

    Google Scholar 

  15. 15.

    G. Carpenter, R. Zee, A. Rogerson, J. Nucl. Mater. 159, 86–100 (1988)

    ADS  Google Scholar 

  16. 16.

    G. Carpenter, R. Murgatroyd, A. Rogerson, J. Watters, J. Nucl. Mater. 101, 28–37 (1981)

    ADS  Google Scholar 

  17. 17.

    A. Rogerson, J. Nucl. Mater. 159, 43–61 (1988)

    ADS  Google Scholar 

  18. 18.

    R.B. Adamson, Irradiation Growth of Zircaloy, Zirconium in the Nuclear Industry (ASTM International, West Conshohocken, 1977)

    Google Scholar 

  19. 19.

    R. Murgatroyd, A. Rogerson, J. Nucl. Mater. 79, 302–311 (1979)

    ADS  Google Scholar 

  20. 20.

    A. Rogerson, R. Murgatroyd, J. Nucl. Mater. 80, 253–259 (1979)

    ADS  Google Scholar 

  21. 21.

    R. Agarwala, M. Anand, B. Pande, Defect and Diffusion. Forum. 48, 29–56 (1987)

    Google Scholar 

  22. 22.

    W. Bell, J. Nucl. Mater. 55, 14–22 (1975)

    ADS  Google Scholar 

  23. 23.

    R. Gilbert, K. Farrell, C. Coleman, J. Nucl. Mater. 84, 137–148 (1979)

    ADS  Google Scholar 

  24. 24.

    D. Northwood et al., J. Nucl. Mater. 79, 379–394 (1979)

    ADS  Google Scholar 

  25. 25.

    M. Griffiths, J. Nucl. Mater. 159, 190–218 (1988)

    ADS  Google Scholar 

  26. 26.

    C. Yan, R. Wang, Y. Wang, X. Wang, G. Bai, NET. 47, 323–331 (2015)

    Google Scholar 

  27. 27.

    A. Adrych-Brunning, M. Gilbert, J.-C. Sublet, A. Harte, C. Race, J. Nucl. Mater. 498, 282–289 (2018)

    ADS  Google Scholar 

  28. 28.

    O. Noorikalkhoran, I. Sevostianov, Int. J. Eng. Sci. 120, 119–128 (2017)

    Google Scholar 

  29. 29.

    S.F.G. Ardekani, K. Hadad, Nucet. 3, 73–80 (2017)

    Google Scholar 

  30. 30.

    U. Saha, K. Devan, A. Bachchan, G. Pandikumar, S. Ganesan, Pramana 90, 46 (2018)

    ADS  Google Scholar 

  31. 31.

    D. Guo et al., J Nucl Sci Technol. 53, 161–172 (2016)

    Google Scholar 

  32. 32.

    M.A. Amirkhani, M.A. Asadabad, M. Hassanzadeh, S.M. Mirvakili, A. Mohammadi, Nucl Sci Tech. 30, 92 (2019)

    Google Scholar 

  33. 33.

    P. Vladimirov, S. Bouffard, C R Phys. 9, 303–322 (2008)

    ADS  Google Scholar 

  34. 34.

    M. A. Amirkhani, M. A. Asadabad, M. Hassanzadeh, S. M. Mirvakili, J Radioanal Nucl Ch. 1–9 (2019)

  35. 35.

    M. Danilkin et al., Radiat. Meas. 126, 106134 (2019)

    Google Scholar 

  36. 36.

    R. Assylbayev, A. Akilbekov, A. Dauletbekova, A. Lushchik, E. Shablonin, E. Vasil'chenko, Radiat. Meas. 90, 18–22 (2016)

    Google Scholar 

  37. 37.

    G. Timoshenko, A. Krylov, M. Paraipan, I. Gordeev, Radiat. Meas. 107, 27–32 (2017)

    Google Scholar 

  38. 38.

    R. Chauhan, P. Rana, Radiat. Meas. 83, 43–46 (2015)

    Google Scholar 

  39. 39.

    L.R. Greenwood, R.K. Smither, SPECTER: Neutron damage calculations for materials irradiations (Argonne National Lab, Lemont, 1985)

    Google Scholar 

  40. 40.

    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM: the stopping and range of ions in matter (Cadence Design Systems, San Jose, 2008)

    Google Scholar 

  41. 41.

    AEOI, Final Safety Analyses Report for Tehran Research Reactor (NSTRI, Tehran, 2009)

    Google Scholar 

  42. 42.

    D.B. Pelowitz, MCNPXTM user’s manual (Los Alamos National Laboratory, Los Alamos, 2005)

    Google Scholar 

  43. 43.

    Y. Rahmani, E. Zarifi, A. Pazirandeh, Nukleonik. 55, 323–330 (2010)

    Google Scholar 

  44. 44.

    L. Greenwood, SPECOMP calculations of radiation damage in compounds (ASTM International, West Conshohocken, 1989)

    Google Scholar 

  45. 45.

    R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, Nucl. Instrum. Meth. B. 310, 75–80 (2013)

    ADS  Google Scholar 

  46. 46.

    J.F. Ziegler, Nucl. Instrum. Meth. B. 219, 1027–1036 (2004)

    ADS  Google Scholar 

  47. 47.

    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Meth. B. 268, 1818–1823 (2010)

    ADS  Google Scholar 

  48. 48.

    J. Ziegler, J. Biersack, U. Littmark, The Stopping and Range of Ions in Solids 1 (SRIM Co., Los Angeles, 1985)

    Google Scholar 

  49. 49.

    G. Kinchin, R. Pease, Rep. Prog. Phys. 18, 1 (1955)

    ADS  Google Scholar 

  50. 50.

    M. Dinkgreve, J. Paredes, M.M. Denn, D. Bonn, J Non-Newton Fluid. 238, 233–241 (2016)

    Google Scholar 

  51. 51.

    A. Karolik, A. Luhvich, J. Phys-Condens Mat. 6, 873 (1994)

    ADS  Google Scholar 

  52. 52.

    W. Dorchester, RSICC COMPUTER CODE COLLECTION WIMS-D4 (Atomic Energy Establishment,1990)

  53. 53.

    O. Noori-kalkhoran, M. Gei, Prog. Nucl. Energ. 118, 103079 (2020)

    Google Scholar 

  54. 54.

    T.S. Byun, M. Li, K. Farrell, Metall. Mater. Trans. A. 44, 84–93 (2013)

    Google Scholar 

  55. 55.

    G. Haag, Properties of ATR-2E Graphite and Property Changes due to Fast Neutron Irradiation (Forschungszentrum Jülich, Jülich, 2005)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamad Amin Amirkhani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Torabi, E., Hasanzadeh, M. & Amirkhani, M.A. The effect of neutron radiation on the yield stress of the Bushehr reactor clad. Appl. Phys. A 126, 532 (2020). https://doi.org/10.1007/s00339-020-03719-8

Download citation

Keywords

  • Radiation damage
  • Neutron flux
  • Bushehr nuclear power plant (BNPP)
  • Fuel clad
  • SPECTER
  • MCNPX