XANES investigation of novel lanthanide-doped CuCr0.99Ln0.01S2 (Ln = La, Ce) solid solutions

Abstract

The study of the valence state, local environment structure and magnetic properties of novel type CuCr0.99Ln0.01S2 (Ln = La, Ce) solid solutions was carried out using X-ray absorption spectroscopy, finite difference method simulations and static magnetic susceptibility measurements. The good agreement between experimental and calculated data indicates that cationic substitution does not lead to significant changes in the copper, chromium and sulfur local environment character and electronic density distribution. The copper atoms were found to be in Cu+ oxidation state, the sulfur atoms—in S2− oxidation state and the chromium atoms—in Cr3+ state. The cationic substitution of chromium by lanthanum and cerium in CuCrS2 does not significantly affect the effective magnetic moment and exchange interactions character. The lanthanum-doped CuCr0.99Ln0.01S2 solid solution demonstrates the Seebeck coefficient value 4 times greater than for CuCrS2-matrix at 500 K.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Y.-X. Chen, B.-P. Zhang, Z.-H. Ge, P.-P. Shang, Preparation and thermoelectric properties of ternary superionic conductor CuCrS2. J. Solid State Chem. 186, 109–115 (2012). https://doi.org/10.1016/j.jssc.2011.11.040

    ADS  Article  Google Scholar 

  2. 2.

    A. Kaltzoglou, P. Vaqueiro, T. Barbier, E. Guilmeau, A. Powell, Ordered-defect sulfides as thermoelectric materials. J. Electron. Mater. 43, 2029–2034 (2014). https://doi.org/10.1007/s11664-013-2941-0

    ADS  Article  Google Scholar 

  3. 3.

    E.V. Korotaev, M.M. Syrokvashin, IYu. Filatova, K.G. Pelmenev, V.V. Zvereva, N.N. Peregudova, J. Electron. Mater. 47, 3392–3397 (2018). https://doi.org/10.1007/s11664-018-6230-9

    ADS  Article  Google Scholar 

  4. 4.

    R.F. Al’mukhametov, R.A. Yakshibaev, E.V. Gabitov, Phys. Solid State 41, 1327–1328 (1999). https://doi.org/10.1134/1.1130992

    ADS  Article  Google Scholar 

  5. 5.

    R.F. Al’mukhametov, R.A. Yakshibaev, E.V. Gabitov, A.R. Abdullin, R.M. Kutusheva, Phys. Stat. Sol. B 236, 29–33 (2003). https://doi.org/10.1002/pssb.200301413

    ADS  Article  Google Scholar 

  6. 6.

    G.R. Akmanova, A.D. Davleshina, Lett. Mater. 3, 76–78 (2013)

    Article  Google Scholar 

  7. 7.

    A. Karmakar, K. Dey, S. Chatterjee, S. Majumdar, S. Giri, Appl. Phys. Lett. 104, 052906 (2014). https://doi.org/10.1063/1.4863937

    ADS  Article  Google Scholar 

  8. 8.

    F.M.R. Engelsman, G.A. Wiegers, F. Jellinek, B. van Laar, J. Solid State Chem. 6, 574–582 (1973). https://doi.org/10.1016/S0022-4596(73)80018-0

    ADS  Article  Google Scholar 

  9. 9.

    R. Miyawaki, F. Hatert, M. Pasero, S. Mills, Miner. Mag. 83, 887–893 (2019). https://doi.org/10.1180/mgm.2019.73

    Article  Google Scholar 

  10. 10.

    G.M. Abramova, G.A. Petrakovskii, Low Temp. Phys. 32, 725–734 (2006). https://doi.org/10.1063/1.2219495

    ADS  Article  Google Scholar 

  11. 11.

    G. Abramova, A. Pankrats, G. Petrakovskii, J.C.E. Rasch, M. Boehm, A. Vorotynov, V. Tugarinov, R. Szumszak, A. Bovina, V. Vasil’ev, J. Appl. Phys. 107, 931 (2010)

    Article  Google Scholar 

  12. 12.

    N. Tsujii, H. Kitazawa, G. Kido, Phys. Stat. Sol. (C) 3, 4417–4418 (2006). https://doi.org/10.1002/pssc.200669659

    Article  Google Scholar 

  13. 13.

    N. Le Nagard, G. Collin, O. Gorochov, Mater. Res. Bull. 14, 1411–1417 (1979). https://doi.org/10.1016/0025-5408(79)90083-7

    Article  Google Scholar 

  14. 14.

    I.G. Vasileva, V.V. Kriventsov, J. Synch. Investig. 4, 640–644 (2010). https://doi.org/10.1134/S1027451010040178

    Article  Google Scholar 

  15. 15.

    Inorganic crystal structure database. Version 2.1.0/FIZ Karlsruhe, Germany

  16. 16.

    Experimental station “EXAFS spectroscopy”. http://ssrc.inp.nsk.su/CKP/eng/stations/passport/8/. Accessed 18 June 2018

  17. 17.

    P.S. Zavertkin, D.V. Ivlyushkin, M.R. Mashkovtsev, A.D. Nikolenko, S.A. Sutormina, N.I. Chkhalo, Optoelectron. Instrum. Proc. 55, 107–114 (2019). https://doi.org/10.3103/s8756699019020018

    Article  Google Scholar 

  18. 18.

    S.A. Guda, A.A. Guda, M.A. Soldatov, K.A. Lomachenko, A.L. Bugaev, C. Lamberti, W. Gawelda, C. Bressler, G. Smolentsev, A.V. Soldatov, Y. Joly, J. Chem. Theory Comput. 11, 4512–4521 (2015). https://doi.org/10.1021/acs.jctc.5b00327

    Article  Google Scholar 

  19. 19.

    Y. Joly, Phys. Rev. B 63, 125120–125129 (2001). https://doi.org/10.1103/PhysRevB.63.125120

    ADS  Article  Google Scholar 

  20. 20.

    G.S. Henderson, F.M. de Groot, B.J. Moulton, Rev. Miner. Geochem. 78, 75–138 (2014). https://doi.org/10.2138/rmg.2014.78.3

    Article  Google Scholar 

  21. 21.

    J.W. Niemantsverdriet, Spectroscopy in Catalysis: An Introduction, 3rd, Completely Revised and Enlarged Edition (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007), p. 326

    Google Scholar 

  22. 22.

    G.J. Schmitz, U. Prahl, Handbook of Software Solutions for ICME (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2017), p. 595

    Google Scholar 

  23. 23.

    N. Tsujii, H. Kitazawa, Substitution effect on the two-dimensional triangular-lattice system CuCrS2. J. Phys. Condens. Matter 19, 145245 (2007). https://doi.org/10.1088/0953-8984/19/14/145245

    ADS  Article  Google Scholar 

  24. 24.

    M.M. Syrokvashin, E.V. Korotaev, IYu. Filatova et al., Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 205, 593–596 (2018). https://doi.org/10.1016/j.saa.2018.07.053

    ADS  Article  Google Scholar 

  25. 25.

    O. Bunau, Y. Joly, J. Phys. Condens. Matter 21, 345501 (2009). https://doi.org/10.1088/0953-8984/21/34/345501

    Article  Google Scholar 

  26. 26.

    J.D. Bourke, C.T. Chantler, Phys. Rev. Lett. 104, 206601 (2010). https://doi.org/10.1103/PhysRevLett.104.206601

    ADS  Article  Google Scholar 

  27. 27.

    J.D. Bourke, C.T. Chantler, Y. Joly, J. Synchrotron Rad. 23, 551–559 (2016). https://doi.org/10.1107/S1600577516001193

    Article  Google Scholar 

  28. 28.

    S. Blundell, Magnetism in Condensed Matter (Oxford University Press, New York, 2001)

    Google Scholar 

  29. 29.

    P. Selwood, Magnetochemistry, 2nd edn. (Interscience Publishers, New York, 1956)

    Google Scholar 

Download references

Acknowledgements

The study was carried out with a funding from the Russian Science Foundation (Project No. 19-73-10073). The X-ray absorption spectra were measured using the shared research center SSTRC on the basis of the Novosibirsk VEPP-4 - VEPP-2000 complex at BINP SB RAS, using equipment supported by Project RFMEFI62119X0022.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. V. Korotaev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korotaev, E.V., Syrokvashin, M.M., Filatova, I.Y. et al. XANES investigation of novel lanthanide-doped CuCr0.99Ln0.01S2 (Ln = La, Ce) solid solutions. Appl. Phys. A 126, 537 (2020). https://doi.org/10.1007/s00339-020-03715-y

Download citation

Keywords

  • XANES
  • Finite difference method
  • X-ray techniques
  • Simulation and modeling
  • Functional materials
  • Electronic materials
  • Magnetic properties
  • Seebeck coefficient