Molecular dynamics-based analysis of the effect of temperature and strain rate on deformation of nanocrystalline CoCrFeMnNi high-entropy alloy

Abstract

The effect of temperature and strain rates on microstructure development of a typical polycrystalline CoCrFeMnNi high-entropy alloy was conducted in the molecular dynamics study. Four typical temperatures of 77 K, 300 K, 700 K and 1100 K were selected. The results revealed that the peak stress and the flow stress decreased with the increases in formation temperatures, while the extent of twinning was found to be responsive to the temperatures. The temperature-linked differences in the growth velocity of intrinsic stacking were observed. Furthermore, three strain rates of 1 × 108 s−1, 5 × 108 s−1, and 1 × 109 s−1 were chosen to explore the influence of strain rate on the microstructural behavior of the material at 300 K. It was found that both peak stress and flow stress increased with the strain rates. The FCC → HCP phase transformation and parallel twin formation were observed as the response to plastic deformation of the material. The simulation shows that the twinning controls the inelastic deformation at low temperatures and high strain rates. With the increase in temperature and a reduction in strain rate, dislocation slipping is the main reason for the plasticity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data Availability

Template for Data Availability Statement

Data available on request from the authors: The data that support the findings of this study are available from the corresponding author upon reasonable request

Data available in article or supplementary material: The data that support the findings of this study are available within the article [and its supplementary material].

Data openly available in a public repository that issues datasets with DOIs: The data that support the findings of this study are openly available in [repository name] at http://doi.org/[doi], reference number [reference number].

References

  1. 1.

    C. Zhu, Z. Lu, T. Nieh, Acta Mater. 61(8), 2993–3001 (2013)

    Google Scholar 

  2. 2.

    K.-Y. Tsai, M.-H. Tsai, J.-W. Yeh, Acta Mater. 61(13), 4887–4897 (2013)

    Google Scholar 

  3. 3.

    J. He, C. Zhu, D. Zhou, W. Liu, T. Nieh, Z. Lu, Intermetallics 55, 9–14 (2014)

    Google Scholar 

  4. 4.

    D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Entropy 16(1), 494–525 (2014)

    ADS  Google Scholar 

  5. 5.

    G. Dirras, H. Couque, L. Lilensten, A. Heczel, D. Tingaud, J.-P. Couzinié, L. Perrière, J. Gubicza, I. Guillot, Mater. Charact. 111, 106–113 (2016)

    Google Scholar 

  6. 6.

    Q. Tang, Y. Huang, Y. Huang, X. Liao, T. Langdon, P. Dai, Mater. Lett. 151, 126–129 (2015)

    Google Scholar 

  7. 7.

    P. Kwasniak, H. Garbacz, K. Kurzydlowski, Acta Mater. 102, 304–314 (2016)

    Google Scholar 

  8. 8.

    C. Cáceres, D. Rovera, J. Light Metals 1(3), 151–156 (2001)

    Google Scholar 

  9. 9.

    J. Eastman, F. Heubaum, T. Matsumoto, H. Birnbaum, Acta Metall. 30(8), 1579–1586 (1982)

    Google Scholar 

  10. 10.

    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6(5), 299–303 (2004)

    Google Scholar 

  11. 11.

    B. Cantor, I. Chang, P. Knight, A. Vincent, Mater. Sci. Eng. A 375, 213–218 (2004)

    Google Scholar 

  12. 12.

    A. Zaddach, C. Niu, C. Koch, D. Irving, JOM 65(12), 1780–1789 (2013)

    ADS  Google Scholar 

  13. 13.

    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345(6201), 1153–1158 (2014)

    ADS  Google Scholar 

  14. 14.

    W. Woo, E.-W. Huang, J.-W. Yeh, H. Choo, C. Lee, S.-Y. Tu, Intermetallics 62, 1–6 (2015)

    Google Scholar 

  15. 15.

    M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy, Y. Champion, Acta Mater. 88, 355–365 (2015)

    Google Scholar 

  16. 16.

    N. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z. Chen, H. Matsunoshita, K. Tanaka, H. Inui, E.P. George, Sci. Rep. 6(35863), 750 (2016)

    Google Scholar 

  17. 17.

    A. Heczel, M. Kawasaki, J.L. Lábár, J.-I. Jang, T.G. Langdon, J. Gubicza, J. Alloys Compd. 711, 143–154 (2017)

    Google Scholar 

  18. 18.

    B. Wang, X. Huang, A. Fu, Y. Liu, B. Liu, Mater. Sci. Eng. A 726, 37–44 (2018)

    Google Scholar 

  19. 19.

    Y. Zhou, Y. Zhang, Y. Wang, G. Chen, Appl. Phys. Lett. 90(18), 181904 (2007)

    ADS  Google Scholar 

  20. 20.

    O.N. Senkov, G. Wilks, J. Scott, D.B. Miracle, Intermetallics 19(5), 698–706 (2011)

    Google Scholar 

  21. 21.

    J.W. Qiao, S. Ma, E. Huang, C. Chuang, P. Liaw, Y. Zhang, in Material Science Forum, ed. by R. Wang, Y. Wu, X. Wu (Trans Tech Publication, Baech, 2011), pp. 419–425

    Google Scholar 

  22. 22.

    F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61(15), 5743–5755 (2013)

    Google Scholar 

  23. 23.

    S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, L. Vitos, Scr. Mater. 108, 44–47 (2015)

    Google Scholar 

  24. 24.

    A. Gali, E.P. George, Intermetallics 39, 74–78 (2013)

    Google Scholar 

  25. 25.

    L. Li, H. Chen, Q. Fang, J. Li, F. Liu, Y. Liu, P.K. Liaw, Intermetallics 120, 106741 (2020)

    Google Scholar 

  26. 26.

    Q. Fang, Y. Chen, J. Li, C. Jiang, B. Liu, Y. Liu, P.K. Liaw, Int. J. Plast. 114, 161–173 (2019)

    Google Scholar 

  27. 27.

    L. Jia, Q. Fang, B. Liu, L. Yong, Acta Mater. 147, 35–41 (2018)

    Google Scholar 

  28. 28.

    W.-M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, B.-J. Lee, npj Comput. Mater. 4(1), 1–9 (2018)

    Google Scholar 

  29. 29.

    S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics (Sandia National Labs, Albuquerque, NM, 1993)

    Google Scholar 

  30. 30.

    N.S. Martys, R.D. Mountain, Phys. Rev. E 59(3), 3733 (1999)

    ADS  Google Scholar 

  31. 31.

    D.J. Evans, B.L. Holian, J. Chem. Phys. 83(8), 4069–4074 (1985)

    ADS  Google Scholar 

  32. 32.

    A. Stukowski, V.V. Bulatov, A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20(8), 085007 (2012)

    ADS  Google Scholar 

  33. 33.

    A. Stukowski, Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

    ADS  MathSciNet  Google Scholar 

  34. 34.

    W. Abuzaid, H. Sehitoglu, Mater. Charact. 129, 288–299 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to deeply appreciate the support from the National Natural Sciences Foundation of China (11572191, 51701117 and 51779139) and Shanghai Science and Technology Committee Foundation (17411962200).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miaolin Feng.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Chen, X. & Feng, M. Molecular dynamics-based analysis of the effect of temperature and strain rate on deformation of nanocrystalline CoCrFeMnNi high-entropy alloy. Appl. Phys. A 126, 529 (2020). https://doi.org/10.1007/s00339-020-03714-z

Download citation

Keywords

  • CoCrFeMnNi high-entropy alloy
  • Parallel twins
  • Intrinsic stacking faults
  • Phase transformation