Surface-enhanced Raman scattering and antibacterial properties from copper nanoparticles obtained by green chemistry

Abstract

In this study, copper nanoparticles (CuNPs) were synthesized using the extract of Opuntia ficus-Indica and Geranium as a reducing agent. By transmission electron microscopy, the morphology of the nanoparticles was determined to be mostly spherical, with a particle size about 3–10 nm. The UV–Vis spectra displayed absorption bands between 525 and 550 nm, associated with the surface plasmon resonance in the CuNPs. The various particle sizes obtained were tested as SERS substrate with the pyridine molecule. Antibacterial activity of copper nanoparticles against Escherichia coli gram-negative bacteria was studied. Bacteriological inhibition tests were performed on nutrient agar plates supplemented with different concentrations of copper nanoparticles. The copper nanoparticles with a concentration of 150 μg/mL and a size distribution around 6 nm showed the largest bactericidal effectiveness against E. coli.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    N. El-Shafa, M.E. El-Khouly, M. El-Kemary, M. Ramadan, L. Eldesoukey, M. Masoud, Graphene oxide decorated with zinc oxide nanoflower, silver and titanium dioxide nanoparticles: fabrication, characterization, DNA interaction, and antibacterial activity. RSC Adv. 9, 3704 (2019). https://doi.org/10.1039/C8RA09788G

    Article  Google Scholar 

  2. 2.

    S. Ahmad, S. Munir, N. Zeb, A. Ullah, B. Khan, J. Ali, M. Bilal, M. Omer, M. Alamzeb, S.M. Salman, S. Ali, Green nanotechnology: a review on green synthesis of silver nanoparticles: an ecofriendly approach. Int. J. Nanomed. 14, 5087–5107 (2019). https://doi.org/10.2147/IJN.S200254

    Article  Google Scholar 

  3. 3.

    K. Shoueir, H. El-Sheshtawy, M. Misbah, H. El-hosainy, I. El-mehasseb, M. El-Kemary, Fenton-like nanocatalyst for photodegradation of methylene blue under visible light activated by hybrid green DNSA@Chitosan@MnFe2O4. Carbohydr. Polym. 197, 17–28 (2018). https://doi.org/10.1016/j.carbpol.2018.05.076

    Article  Google Scholar 

  4. 4.

    H. El-Sheshtawy, H. El-hosainy, K.R. Shoueir, I. El-mehasseb, M. El-Kemary, Facile immobilization of Ag nanoparticles on g-C3N4/V2O5 surface for enhancement of post-illumination, catalytic, and photocatalytic activity removal of organic and inorganic pollutants. Appl. Surf. Sci. 2019(467), 268–276 (2019). https://doi.org/10.1016/j.apsusc.2018.10.109

    ADS  Article  Google Scholar 

  5. 5.

    A. Mezni, M.M. Ibrahim, M. El-Kemary, A.A. Shaltout, N.Y. Mostafa, J. Ryl, M.A. Amin, Cathodically activated Au/TiO2 nanocomposite synthesized by a new facile solvothermal method: an efficient electrocatalyst with Pt-like activity for hydrogen generation Electrochim. Acta 290, 404–418 (2018). https://doi.org/10.1016/j.electacta.2018.08.083

    Article  Google Scholar 

  6. 6.

    H. Duan, D. Wang, Y. Li, Green chemistry for nanoparticle synthesis Chem. Soc. Rev. 44, 5778–5792 (2015)

    Article  Google Scholar 

  7. 7.

    O.V. Salata, Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2, 3 (2004). https://doi.org/10.1186/1477-3155-2-3

    Article  Google Scholar 

  8. 8.

    Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, R167–R181 (2003). https://doi.org/10.1088/0022-3727/36/13/201

    ADS  Article  Google Scholar 

  9. 9.

    M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385), 2013–2016 (1998)

    ADS  Article  Google Scholar 

  10. 10.

    W.C.W. Chan, S.M. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998). https://doi.org/10.1126/science.281.5385.2016

    ADS  Article  Google Scholar 

  11. 11.

    M. Razavi, E. Salahinejad, M. Fahmy, M. Yazdimamaghani, D. Vashaee, L. Tayebi, Green chemical and biological synthesis of nanoparticles and their biomedical applications. Green processes for nanotechnology (Springer, Berlin, 2015), pp. 207–235

    Google Scholar 

  12. 12.

    Ahtesham Ahmad Shad, Review of green synthesis and antimicrobial efficacy of copper and nickel nanoparticles. Am. J. Biomed. Sci. Res. 2019–3(6), 472–475 (2019). https://doi.org/10.34297/AJBSR.2019.03.000721

    Article  Google Scholar 

  13. 13.

    G. Sánchez-Sanhueza, D. Fuentes-Rodríguez, H. Bello-Toledo, Copper nanoparticles as potential antimicrobial agent in disinfecting root canals: a systematic review. Int. J. Odontostomatol. 10(3), 547–554 (2016)

    Article  Google Scholar 

  14. 14.

    A. Godymchuk, G. Frolov, A. Gusev, O. Zakharova, E. Yunda, D. Kuznetsov, E. Kolesnikov, Antibacterial properties of copper nanoparticle dispersions: influence of synthesis conditions and physicochemical characteristics. IOP Conf. Ser. Mater. Sci. Eng. 98, 012033 (2015). https://doi.org/10.1088/1757-899X/98/1/012033

    Article  Google Scholar 

  15. 15.

    S. Mahmoodi, A. Elmi, S. Hallaj-Nezhadi, Copper nanoparticles as antibacterial agents. J. Mol. Pharm. Org. Process. Res. 6, 140 (2018)

    Article  Google Scholar 

  16. 16.

    A.K. Chatterjee, R. Chakraborty, T. Basu, Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13), 135101 (2014). https://doi.org/10.1088/0957-4484/25/13/135101

    ADS  Article  Google Scholar 

  17. 17.

    J.R. Koduru, S.K. Kailasa, J.R. Bhamore, K.-H. Kim, T. Dutta, K. Vellingiri, Adv. Colloid Interface Sci. 256, 326–339 (2018)

    Article  Google Scholar 

  18. 18.

    J.R. Bhamore, S. Jha, A.K. Mungara, R.K. Singhal, D. Sonkeshariya, S.K. Kailasa, Biosens. Bioelectron. 80, 243–248 (2016)

    Article  Google Scholar 

  19. 19.

    N. Nagar, V. Devra, Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves. Mater. Chem. Phys. 213, 44–51 (2018)

    Article  Google Scholar 

  20. 20.

    S. Shende, A.P. Ingle, A. Gade et al., Green synthesis of copper nanoparticles by Citrus media Linn (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 31, 865–873 (2015)

    Article  Google Scholar 

  21. 21.

    H.J. Lee, J.Y. Song, B.S. Kim, Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J. Chem. Technol. Biotechnol. 88(11), 1971–1977 (2013)

    Google Scholar 

  22. 22.

    S. Harne, A. Sharma, M. Dhaygude, S. Joglekar, K. Kodam, M. Hudlikar, Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells. Colloids Surf. B 95, 284–288 (2012)

    Article  Google Scholar 

  23. 23.

    Y.T. Prabhu, K.V. Rao, V.S. Sai, T. Pavani, A facile biosynthesis of copper nanoparticles: a micro-structural and antibacterial activity investigation. J. Saudi Chem. Soc. 21(2), 180–185 (2017)

    Article  Google Scholar 

  24. 24.

    G. Caroling, E. Vinodhini, A.M. Ranjitham, P. Shanthi, Biosynthesis of copper nanoparticles using aqueous Phyllanthus embilica (Gooseberry) extract-characterisation and study of antimicrobial effects. Int. J. Nano Chem. 1(2), 53–63 (2015)

    Google Scholar 

  25. 25.

    J. Karimi, S. Mohsenzadeh, Rapid, Green, and eco-friendly biosynthesis of copper nanoparticles using flower extract of Aloe Vera, synthesis and reactivity in inorganic, metal-organic, and nano-metal. Chemistry 45(6), 895–898 (2015). https://doi.org/10.1080/15533174.2013.862644

    Article  Google Scholar 

  26. 26.

    R. Kolekar, S. Bhade, R. Kumar, P. Reddy, R. Singh, K. Pradeepkumar, Curr. Sci 109, 2 (2015)

    Google Scholar 

  27. 27.

    G. Caroling, M.N. Priyadharshini, E. Vinodhini, A.M. Ranjitham, P. Shanthi, Biosynthesis of copper nanoparticles using aqueous guava extract-characterization and study of antibacterial effects. Int. J. Pharm. Biol. Sci. 5(2), 25–43 (2015)

    Google Scholar 

  28. 28.

    N.G.D. Sirisha, S. Asthana, Microwave mediated green synthesis of copper nanoparticles using aqueous extract of Piper Nigrum seeds and particles characterisation. IAETSD J. Adv. Res. Appl. Sci. 5(2), 859–870 (2018)

    Google Scholar 

  29. 29.

    Pradhan, S., Bhandari, K., & Shrestha, R. (2019, October). Bio-synthesis of copper nanoparticles (CuNPs), influence of various physico-chemical parameters on synthesis and study of antibacterial activity. In Extended Abstracts, p. 520

  30. 30.

    K.M. Rajesh, B. Ajitha, Y.A.K. Reddy, Y. Suneetha, P.S. Reddy, Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik 154, 593–600 (2018)

    ADS  Article  Google Scholar 

  31. 31.

    P. Kuppusamy, M.M. Yusoff, G.P. Maniam, N. Govindan, Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications: an updated report. Saudi Pharm. J. 24(4), 473–484 (2016)

    Article  Google Scholar 

  32. 32.

    J.-G. Bocarando-Chacon, M. Cortez-Valadez, D. Vargas-Vázquez, F. Rodríguez Melgarejo, M. Flores-Acosta, P.G. Mani-González, E. León-Sarabia, A. Navarro-Badilla, R. Ramírez-Bon, Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant. Phys. E Low-Dimens. Syst. Nanostruct. 59, 15–18 (2014)

    ADS  Article  Google Scholar 

  33. 33.

    O. Rocha-Rocha, M. Cortez-Valadez, A.R. Hernández-Martínez, R. Gámez-Corrales, R.A.B. Alvarez, R. Britto-Hurtado, Y. Delgado-Beleño, C.E. Martinez-Nuñez, A. Pérez-Rodríguez, H. Arizpe-Chávez, M. Flores-Acosta, Green synthesis of Ag–Cu nanoalloys using Opuntia ficus-indica. J. Electr. Mater. 46, 802–807 (2017). https://doi.org/10.1007/s11664-016-4942-2

    ADS  Article  Google Scholar 

  34. 34.

    D. Gopi, K. Kanimozhi, L. Kavitha, Opuntia ficus indica peel derived pectin mediated hydroxyapatite nanoparticles: synthesis, spectral characterization, biological and antimicrobial activities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 141, 135–143 (2015). https://doi.org/10.1016/j.saa.2015.01.039

    ADS  Article  Google Scholar 

  35. 35.

    A. Gade, S. Gaikwad, V. Tiwari, A. Yadav, A. Ingle, M. Rai, Biofabrication of silver nanoparticles by Opuntia ficus-indica: in vitro antibacterial activity and study of the mechanism involved in the synthesis. Curr. Nanosci. 6(4), 370–375 (2010). https://doi.org/10.2174/157341310791659026

    ADS  Article  Google Scholar 

  36. 36.

    L.E. Silva-de-Hoyos, V. Sánchez-Mendieta, A. Rico-Moctezuma, A.R. Vilchis-Nestor, M.A. Camacho-López, M. Avalos-Borja, Silver nanoparticles biosynthesized using Opuntia ficus aqueous extract. Superficies y vacío 25(1), 31–35 (2012)

    Google Scholar 

  37. 37.

    A. Pawlowska, Z. Sadowski, Biosynthesis of copper nanoparticles using aqueous extracts of aloe vera and geranium and bioleaching solutions. Solid State Phenom. 262, 193–196 (2017). https://doi.org/10.4028/www.scientific.net/SSP.262.193

    Article  Google Scholar 

  38. 38.

    A.C. Burdușel, O. Gherasim, A.M. Grumezescu, L. Mogoantă, A. Ficai, E. Andronescu, Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials (Basel, Switzerland) 8(9), 681 (2018). https://doi.org/10.3390/nano8090681

    Article  Google Scholar 

  39. 39.

    T. Bora, Recent developments on metal nanoparticles for SERS applications, noble and precious metals. SP Ch. (2018). https://doi.org/10.5772/intechopen.71573

    Article  Google Scholar 

  40. 40.

    J.R. Kirtley, S.S. Jha, J.C. Tsang, Surface plasmon model of surface enhanced Raman scattering. Solid State Commun. 35, 509–512 (1980). https://doi.org/10.1016/0038-1098(80)90886-8

    ADS  Article  Google Scholar 

  41. 41.

    R.K. Chang, R.E. Benner, R. Dornhaus, K.U. von Raben, B.L. Laube, Enhanced Raman scattering of molecules adsorbed on Ag, Cu and Au surfaces. Spring. Ser. Opt. Sci. 26, 55–66 (1981)

    Google Scholar 

  42. 42.

    P.F. Liao, M.B. Stern, Surface-enhanced Raman scattering on gold and aluminum particle arrays. Opt. Lett. 7, 483–485 (1982). https://doi.org/10.1364/ol.7.000483

    ADS  Article  Google Scholar 

  43. 43.

    I. Pockrand, Surface enhanced Raman scattering (SERS) from silver, copper, and gold films in UHV: excitation spectra. Stud. Surf. Sci. Catal. 14, 357–362 (1983). https://doi.org/10.1016/S0167-2991(09)61077-6

    Article  Google Scholar 

  44. 44.

    N.D. Israelsen, C. Hanson, E. Vargis, Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: an introduction. Sci. World J. 2015, 124582 (2015). https://doi.org/10.1155/2015/124582

    Article  Google Scholar 

  45. 45.

    F. Tian, F. Bonnier, A. Casey, A.E. Shanahan, H.J. Byrne, Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape. Anal. Methods 6, 9116–9123 (2014). https://doi.org/10.1039/C4AY02112F

    Article  Google Scholar 

  46. 46.

    S.S. Jushi, S.F. Patil, V. Iyer, S. Mahumuni, Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct. Mater. 10, 1135–1144 (1998). https://doi.org/10.1016/S0965-9773(98)00153-6

    Article  Google Scholar 

  47. 47.

    T. Del Castillo-Castro, E. Larios-Rodríguez, Z. Molina-Arenas, M.M. Castillo-Ortega, J. Tanori, Synthesis and characterization of metallic nanoparticles and their incorporation into electroconductive polymer composites. Composi. Part A 38, 107–111 (2007). https://doi.org/10.1016/j.compositesa.2006.01.011

    Article  Google Scholar 

  48. 48.

    Y.S. Park, H.K. Chae, Geometric control and intense plasmon resonances of colloidal truncated triangular copper nanoplates in nonionic microemulsions containing tetrabutylammonium hydroxide. Chem. Mater. 22, 6280–6290 (2010). https://doi.org/10.1021/cm101961g

    Article  Google Scholar 

  49. 49.

    C. Salzemann, A. Brioude, M.P. Pileni, Tuning of copper nanocrystals optical properties with their shapes. J. Phys. Chem. B 110, 7208–7212 (2006). https://doi.org/10.1021/jp0601567

    Article  Google Scholar 

  50. 50.

    Ribeiro E.M. De Oliveira, N.E. da Silva, Filho J.L. de Lima, J.Z. de Brito, M.P. Carvalho da Silva, Study of carbohydrates present in the cladodes of Opuntia ficus-indica (fodder palm), according to age and season. Ciênc. Tecnol. Aliment Campinas 30, 933–939 (2010). https://doi.org/10.1590/S0101-20612010000400015

    Article  Google Scholar 

  51. 51.

    R. Britto Hurtado, M. Cortez-Valadez, L.P. Ramírez-Rodríguez, E. Larios-Rodríguez, R.A.B. Álvarez, O. Rocha-Rocha, Y. Delgado-Beleño, C.E. Martínez-Nuñez, H. Arizpe-Chávez, A.R. Hernández-Martínez, M. Flores-Acosta, Instant synthesis of gold nanoparticles at room temperature and SERS applications. Phys. Lett. A 380, 2658–2663 (2016). https://doi.org/10.1016/j.physleta.2016.05.052

    ADS  Article  Google Scholar 

  52. 52.

    G. Cardini, M. Muniz-Miranda, M. Pagliai, V. Schettino, A density functional study of the SERS spectra of pyridine adsorbed on silver clusters. Theor. Chem. Acc. 117, 451–458 (2007). https://doi.org/10.1007/s00214-006-0176-3

    Article  Google Scholar 

  53. 53.

    A. Kudelski, W. Grochala, M. Janik-Czachor, J. Bukowska, A. Szummer, M. Dolata, Surface-enhanced Raman scattering (SERS) at Copper(I) oxide. J. Raman Spectrosc. 29, 431–435 (1998)

    ADS  Article  Google Scholar 

  54. 54.

    J.R. Lombardi, R.L. Birke, A unified view of surface-enhanced raman scattering. Counts Chem Res 42, 734–742 (2009). https://doi.org/10.1021/ar800249y

    Article  Google Scholar 

  55. 55.

    J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A. Rahuman, Synthesis and antimicrobial activity of copper nanoparticles. Mater. Lett. 71, 114–116 (2012). https://doi.org/10.1016/j.matlet.2011.12.055

    Article  Google Scholar 

  56. 56.

    D.A. Trepiana-Fica, Síntesis de suspensiones de nanopartículas de cobre y quitosano, y evaluación de sus propiedades antimicrobianas frente a Streptococcus mutans (Universidad de Chile facultad de odontología, Tesis de licenciatura, 2015)

    Google Scholar 

  57. 57.

    M. Raffi, S. Mehrwan, T.M. Bhatti, J.I. Akhter, A. Hameed, W. Yawar, M.M. ul Hasan, Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann. Microbiol. 60(1), 75–80 (2010)

    Article  Google Scholar 

  58. 58.

    K.Y. Yoon, J.H. Byeon, J.P. Park, J. Hwang, Susceptibility of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ. 373, 572–575 (2007). https://doi.org/10.1016/j.scitotenv.2006.11.007

    ADS  Article  Google Scholar 

  59. 59.

    P.Y. Reyes-Rodríguez, Síntesis y caracterización de nanopartículas de cobre y óxido de cobre y su incorporación en una matriz polimérica y el estudio de sus propiedades antibacterianas (Tesis de maestría, Centro De Investigación En Química Aplicada, México, 2012)

    Google Scholar 

  60. 60.

    S. Shankar, J.W. Rhim, Effect of copper salts and reducing agents on characteristics and antimicrobial activity of copper nanoparticles. Mater. Lett. 132, 307–311 (2014). https://doi.org/10.1016/j.matlet.2014.06.014

    Article  Google Scholar 

Download references

Acknowledgements

This research was developed thanks to the support provided through the A1-S-46242 CONACYT project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Cortez-Valadez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3241 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bocarando-Chacón, J., Vargas-Vazquez, D., Martinez-Suarez, F. et al. Surface-enhanced Raman scattering and antibacterial properties from copper nanoparticles obtained by green chemistry. Appl. Phys. A 126, 530 (2020). https://doi.org/10.1007/s00339-020-03704-1

Download citation

Keywords

  • Copper nanoparticles
  • Green chemistry
  • Opuntia ficus-Indica
  • Geranium