Gamma-ray shielding parameters of lithium borotellurite glasses using Geant4 code

Abstract

The gamma-ray shielding parameters for ternary lithium borotellurite systems have been reported using Geant4 code. We simulated the mass attenuation coefficients using Geanr4 code between 284 keV and 1.33 MeV. We checked the accuracy of the simulated results by using XCOM software. The Geant4 and XCOM results showed a reasonable agreement. The maximum linear attenuation coefficient (LAC) values were reported at 284 keV and varied between 0.77914 and 0.81525 cm. The minimum LAC is found at 1.33 MeV and varied between 0.23742 and 0.25005 cm. The LAC reduced by 59.7% for TeLiB1 between 284 and 826 keV, while it reduced by only 6.7% at higher energies. The half-value layer (HVL) decreased due to the increase of B2O3 from 5 to 15 mol%, but the HVL values for the glasses which contain 80 mol% of TeO2 are lower than the HVL for the first three compositions (contain 75 mol% of TeO2). TeLiB6 glass is the best attenuator in this study due to the least HVL values of this sample. The results also revealed that TeLiB1 glass with thickness of 2.94803 cm is required to reduce the photon level carrying energy of 284 keV by a factor of one-tenth. For TeLiB6, it requires a sample with a thickness of 2.82123 cm for this aim at the same energy. The effective atomic number for the ternary lithium borotellurite glasses with 80 mol% of TeO2 is higher than those with 75 mol% of TeO2.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    B. Al-Buriahi, T. Tonguc, Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography. Radiat. Phys. Chem. 166, 108507 (2020)

    Article  Google Scholar 

  2. 2.

    S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 144, 356–360 (2018)

    ADS  Article  Google Scholar 

  3. 3.

    Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2–PbO–Al2O3–CaO glasses. Ceram. Int. 46, 2055–2062 (2020)

    Article  Google Scholar 

  4. 4.

    Y. Al-Hadeethi, M.S. Al-Buriahi, M.I. Sayyed, Bioactive glasses and the impact of Si3N4 doping on the photon attenuation up to radiotherapy energies. Ceram. Int. 46, 5306–5314 (2020)

    Article  Google Scholar 

  5. 5.

    A.W. El-Sayed, M.A. Bourham, Comparative study of different concrete composition as gamma-ray shielding materials. Annals Nucl. Energy 85, 306–310 (2015)

    Article  Google Scholar 

  6. 6.

    Y. Al-Hadeethi, M.I. Sayyed, H. Mohammed, L. Rimondin, X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies. Ceram. Int. 46, 251–257 (2020)

    Article  Google Scholar 

  7. 7.

    M.E. Medhat, Y. Wang, Geant4 code for simulation attenuation of gamma rays through scintillation detectors. Ann. Nucl. Energy 62, 316–332 (2013)

    Article  Google Scholar 

  8. 8.

    S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86–94 (2018)

    ADS  Article  Google Scholar 

  9. 9.

    M.H. Hazlan, M. Jamil, R.M. Ramli, N.Z.N. Azman, X-ray attenuation characterisation of electrospun Bi2O3/PVA and WO3/PVA nanofibre mats as potential X-ray shielding materials. Appl. Phys. A 124, 497 (2018)

    ADS  Article  Google Scholar 

  10. 10.

    M. Kurudirek, Heavy metal borate glasses: potential use for radiation shielding. J. Alloy. Compd. 727, 1227–1236 (2017)

    Article  Google Scholar 

  11. 11.

    M.S. Al-Buriahi, Y.S. Rammah, Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing PbO, Al2O3 and Na2O. Appl. Phys. A 125, 717 (2019)

    ADS  Article  Google Scholar 

  12. 12.

    M.S. Al-Buriahi, Y. Rammah, Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Appl. Phys. A 125, 678 (2019)

    ADS  Article  Google Scholar 

  13. 13.

    Y. Al-Hadeethi, M.I. Sayyed, Hiba Mohammed. Lia Rimondin, X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies, Ceramics International 46, 251–257 (2020)

    Google Scholar 

  14. 14.

    Y. Al-Hadeethi, M.I. Sayyed, A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X / PSD software. Ceram. Int. 46, 6136–6140 (2020)

    Article  Google Scholar 

  15. 15.

    M.K. Halimah, S.A. Umar, K.T. Chan, A.A. Latif, M.N. Azlan, A.I. Abubakar, A.M. Hamza, Study of rice husk silicate effects on the elastic, physical and structural properties of borotellurite glasses. Mater. Chem. Phys. 2381, 121891 (2019)

    Article  Google Scholar 

  16. 16.

    Y. Al-Hadeethia, M.I. Sayyed, The influence of PbO on the radiation attenuation features of tellurite glass. Ceram. Int. 45, 24230–24235 (2019)

    Article  Google Scholar 

  17. 17.

    S. Agostinelli, K. John Allison, J.A. al Amako, H. Araujo, P. Arce, M. Asai et al., GEANT4—a simulation toolkit Nuclear instruments and methods in physics research section a: accelerators. Spectrom. Detectors Assoc. Equip. 506, 250–303 (2003)

    Article  Google Scholar 

  18. 18.

    N. Elkhoshkhany, R. El-Mallawany, Optical and kinetics parameters of lithium boro-tellurite glasses. Ceram. Int. 41, 3561–3567 (2015)

    Article  Google Scholar 

  19. 19.

    Berger M.J., Hubbell J.H., (1987), XCOM: Photon Cross Sections Database, Web Version 1.2, available at http://physics.nist.gov/xcom. National Institute of Standards and Technology,, Gaithersburg, MD 20899, USA

  20. 20.

    Y.S. Rammah, A.A. Ali, F.I. El-Agawany, γ-ray shielding features and crystallization of TiO2 borotellurite glasses. J. Non-Cryst. Solids 526, 119720 (2019)

    ADS  Article  Google Scholar 

  21. 21.

    R. El-Mallawany, M.I. Sayyed, M.G. Dong, Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 151, 239–252 (2018)

    ADS  Article  Google Scholar 

  22. 22.

    I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)

    Article  Google Scholar 

  23. 23.

    A. Kumar, Gamma ray shielding properties of PbO-Li2O-B2O3 glasses. Radiat. Phys. Chem. 136, 50–53 (2017)

    ADS  Article  Google Scholar 

  24. 24.

    S.A. Tijani, S.M. Kamal, Y. Al-Hadeethi, M.A. Mehenna Arib, S. Hussein, L.A. Dim Wageh, Radiation shielding properties of transparent erbium zinc tellurite glass system determined at medical diagnostic energies. J. Alloys Comp. 741, 293–299 (2018)

    Article  Google Scholar 

  25. 25.

    R. Bagheri, A.K. Moghaddam, H. Yousefnia, Gamma ray shielding study of bariumebismutheborosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data. Nucl. Eng. and Technol. 49, 216–223 (2017)

    Article  Google Scholar 

  26. 26.

    Y. Al-Hadeethi, M.I. Sayyed, J. Kaewkhao, B.M. Raffah, R. Almalki, R. Rajaramakrishna, M.A. Hussein, Physical, optical properties and radiation shielding studies of xLa2O3-(100-x)B2O3 glass system. Ceramics international 46, 5380–5386 (2020)

    Article  Google Scholar 

  27. 27.

    K. Parminder Kaur, K.J. Singh, S. Thakur, P. Singh, B.S. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 206, 367–377 (2019)

    ADS  Article  Google Scholar 

  28. 28.

    K.J. Singh, N. Singh, R.S. Kaundal, K. Singh, Gamma-ray shielding and structural properties of PbO–SiO2 glasses. Nucl. Instrum. Methods Phys. Res. B 266, 944–948 (2008)

    ADS  Article  Google Scholar 

  29. 29.

    R. Sharma, V. Sharma, P.S. Singh, T. Singh, Effective atomic numbers for some calcium–strontium-borate glasses. Ann. Nucl. Energy 45, 144–149 (2012)

    Article  Google Scholar 

  30. 30.

    V.P. Singh, N.M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: Comparative study. J. Non-Cryst. Solids 404, 167–173 (2014)

    ADS  Article  Google Scholar 

  31. 31.

    H.C. Manjunatha, L. Seenappa, B.M. Chandrika, K.N. Sridhar, C. Hanumantharayappa, Gamma. X-ray and neutron shielding parameters for the Al-based glassy alloys, applied radiation and isotopes 139, 187–194 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors Imen Kebaili and Imed Boukhris gratefully thank the Deanship of Scientific Research at King Khalid University for financial support through research groups program under Grant No. (R.G.P.2/97/41).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. I. Sayyed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kebaili, I., Sayyed, M.I., Boukhris, I. et al. Gamma-ray shielding parameters of lithium borotellurite glasses using Geant4 code. Appl. Phys. A 126, 536 (2020). https://doi.org/10.1007/s00339-020-03702-3

Download citation

Keywords

  • Gamma-ray
  • Shielding
  • Geant4
  • Lithium borotellurite glasses