Investigation of the effect of temperature on the structural, optical, electrical, and self-cleaning properties of ITO thin films

Abstract

Transparent conductive tin-doped indium oxide (In2O3:Sn, ITO) thin films have been deposited onto glass substrate at different substrate temperatures by a simple and inexpensive method of air pressure chemical vapor deposition. The structural characteristics, and optical, electrical, and self-cleaning properties of the ITO thin films were investigated. It is clear that all films have a polycrystalline structure. In the sample synthesized at 550 °C, the preferred growth direction is in the direction of (222), but in the films synthesized at 450° and 500 °C, it is in the direction of (400). In the FESEM figures for all temperatures, the size of the nano-particles is less than 35 nm. In addition, all films have a relatively uniform surface. The analysis (EDX) was used to determine the chemical composition of these films. Transmission and reflection spectra of these films were examined in the 300–1000 nm spectral range and, for investigated films, the transmission coefficients in the visible regions exceed 80% and are weakly affected by deposition temperature. The optical band-gap values, Eg, ranged between 4.1 and 4.2 eV. In self-cleaning properties, the sample synthesized at 550 °C had the highest roughness and the highest contact angle and is a relatively good hydrophobic surface.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    M.J. Alam, D.C. Cameron, Thin Solid Films 377–378, 455–459 (2000)

    Article  Google Scholar 

  2. 2.

    Y. Han, D. Kim, J.-S. Cho, S.K. Koh, Y.S. Song, Sol. Energy Mater. Sol. Cells 65, 211–218 (2001)

    Article  Google Scholar 

  3. 3.

    B.J. Yan, G.Z. Yue, J.M. Owens, J. Yang, S. Guha, Appl. Phys. Lett. 85, 1925–1927 (2004)

    ADS  Article  Google Scholar 

  4. 4.

    S. Calnan, H.M. Uphadhyaya, S. Buecheler, G. Khrypunov, A. Chirila, A. Romeo, R. Hashimoto, T. Nakada, A.N. Tiwari, Thin Solid Films 517, 2340–2343 (2009)

    ADS  Article  Google Scholar 

  5. 5.

    M. Balestrieri, D. Pysch, J.-P. Becker, M. Hermle, W. Warta, S.W. Glunz, Sol. Energy Mater. Sol. Cells 95, 2390–2399 (2011)

    Article  Google Scholar 

  6. 6.

    A.D.M. Rosman, A.H.A. Razak, M.F. Azmi, S.A.M. Al Junid, A.K. Halim, M.F.M. Idros, in IEEE International Conference (2016), pp. 546–550.

  7. 7.

    L.L. Jiang, X. Zeng, M. Li, M.Q. Wang, T.Y. Su, X.C. Tian, J. Tang, RSC Adv. 7, 9316 (2017)

    Article  Google Scholar 

  8. 8.

    J. Lee, D. Lim, K. Yang, W. Choi, J. Cryst. Growth 326, 50 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    I. Madhi, W. Meddeb, B. Bouzid, M. Saadoun, B. Bessais, Appl. Surf. Sci. 355, 242 (2015)

    ADS  Article  Google Scholar 

  10. 10.

    Q. Ouyang, W. Wang, Q. Fu, D. Dong, Thin Solid Films 623, 31 (2017)

    ADS  Article  Google Scholar 

  11. 11.

    M.G. Krishna, V. Madhurima, D.D. Purkayastha, Eur. Phys. J. Appl. Phys. 62, 30001 (2013)

    Article  Google Scholar 

  12. 12.

    V.A. Ganesh, H. Raut, A. Nair, S.J. Ramakrishna, Mater. Chem. 21, 16304–16322 (2011)

    Article  Google Scholar 

  13. 13.

    A.R. Parker, C.R. Lawrence, Nature 414, 33–34 (2001)

    ADS  Article  Google Scholar 

  14. 14.

    B. Bhushan, Philos. Trans. R. Soc. A 367, 1445–1486 (2009)

    ADS  Article  Google Scholar 

  15. 15.

    U.P. Shaik, S. Kshirsagar, M.G. Krishna, S.P. Tewari, D.D. Purkayastha, V. Madhurima, Mater. Lett. 75, 51–53 (2012)

    Article  Google Scholar 

  16. 16.

    D.D. Purkayastha, R. Pandeeswari, V. Madhurima, M.G. Krishna, Mater. Lett. 92, 151–153 (2013)

    Article  Google Scholar 

  17. 17.

    M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Chem. Mater. 14, 2812–2816 (2002)

    Article  Google Scholar 

  18. 18.

    C. Aicheng, P. Xinsheng, K. Kallum, M. Brad, Chem. Commun. 17, 1964–1965 (2004)

    Google Scholar 

  19. 19.

    Z. Weiqin, F. Xinjian, F. Lin, J. Lei, Chem. Commun. 26, 2753–2755 (2006)

    Google Scholar 

  20. 20.

    N. Manavizadeh, F.A. Boroumand, E. Asl-Soleimani, F. Raissi, S. Bagherzadeh, A. Khodayari, M.A. Rasouli, Thin Solid Films 517, 2324–2327 (2009)

    ADS  Article  Google Scholar 

  21. 21.

    A. Amaral, P. Brogueira, C. Nunes de Carvalho, G. Lavareda, Surf. Coat. Technol. 125, 151–156 (2000)

    Article  Google Scholar 

  22. 22.

    A. Luis, C. Nunes de Carvalho, G. Lavareda, A. Amaral, P. Brogueira, M.H. Godinho, Vacuum 64, 475–479 (2002)

    ADS  Article  Google Scholar 

  23. 23.

    V. Senthilkumar, P. Vickraman, Curr. Appl. Phys. 10, 880–885 (2010)

    ADS  Article  Google Scholar 

  24. 24.

    C. Nunes de Carvalho, A. Luis, O. Conde, E. Fortunato, G. Lavareda, A. Amaral, J. Non Cryst. Solids 299–302, 1208–1212 (2002)

    ADS  Article  Google Scholar 

  25. 25.

    O. Tuna, Y. Selamet, G. Aygun, L. Ozyuzer, J. Phys. D Appl. Phys. 43, 055402–55411 (2010)

    ADS  Article  Google Scholar 

  26. 26.

    S.M. Joshi, G.W. Book, R.A. Gerhardt, Thin Solid Films 520, 2723–2730 (2012)

    ADS  Article  Google Scholar 

  27. 27.

    H. Kim, J.S. Horwitz, G.P. Kushto, Z.H. Kafafi, D.B. Chrisey, Appl. Phys. Lett. 79, 284–286 (2001)

    ADS  Article  Google Scholar 

  28. 28.

    M. Maleki, S.M. Rozati, Bull. Mater. Sci. 36, 217 (2013)

    Article  Google Scholar 

  29. 29.

    D. Vaufrey, M.B. Khalifa, M.P. Besland, C. Sandu, M.G. Blanchin, V. Teodorescu, J.A. Roger, J. Tardy, Synth. Methods 127, 207 (2002)

    Article  Google Scholar 

  30. 30.

    J. George, C.S. Menon, Surf. Coat. Technol. 132, 45–48 (2000)

    Article  Google Scholar 

  31. 31.

    C. Guillén, J. Herrero, Mater. Chem. Phys. 112, 641–644 (2008)

    Article  Google Scholar 

  32. 32.

    H.R. Fallah, M. Ghasemi, A. Hassanzadeh, H. Steki, Phys. E 39, 69–74 (2007)

    Article  Google Scholar 

  33. 33.

    H.R. Fallah, M. Ghasemi, A. Hassanzadeh, H. Steki, Mater. Res. Bull. 42, 487–496 (2007)

    Article  Google Scholar 

  34. 34.

    D.V. Morgan, Y.H. Aliyu, R.W. Bunce, A. Salehi, Thin Solid Films 312, 268–272 (1998)

    ADS  Article  Google Scholar 

  35. 35.

    S.M. Hosseini, B.G. Shohany, N. Azad, A. Kompany, Mater. Sci. Pol. 29(4), 253–259 (2011)

    ADS  Article  Google Scholar 

  36. 36.

    K.S. Yoo, S.H. Park, J.H. Kang, Sens. Actuators B Chem. 108, 159–164 (2005)

    Article  Google Scholar 

  37. 37.

    M. Mirzaee, A. Dolati, J. Sol Gel Sci. Technol. 75, 582–592 (2015)

    Article  Google Scholar 

  38. 38.

    H.H. Zain, Y.J. Iqbal, A. Qurashi, A. Hakeem, J. Alloys Compd. 616, 76–80 (2014)

    Article  Google Scholar 

  39. 39.

    H.R. Fallah, M. Ghasemi, A. Hassanzadeh, Phys. E. 39, 69–74 (2007)

    Article  Google Scholar 

  40. 40.

    S. Yaragalla, G. Anilkumar, T.V. Vineeshkumar, N. Kalarikkal, S. Thomas, Adv. Mater. 6, 848–852 (2015)

    Google Scholar 

  41. 41.

    H.R. Fallah, M. Ghasemi, A. Hassanzadeh, H. Steki, Phys. B 373, 274–279 (2006)

    ADS  Article  Google Scholar 

  42. 42.

    M.H. Habibi, N. Talebian, Acta Chim. Slov. 52, 53–59 (2005)

    Google Scholar 

  43. 43.

    L. Gupta, A. Mansingh, P.K. Srivastava, Thin Solid Films 176, 33–44 (1989)

    ADS  Article  Google Scholar 

  44. 44.

    D.E. Morton, Characterizing optical thin films (I). Vac. Technol. Coat. 2, 24–31 (2001)

    Google Scholar 

  45. 45.

    S. Saipriya, M. Sultan, R. Singh, Phys. B Condens. Matter. 406, 812–817 (2011)

    ADS  Article  Google Scholar 

  46. 46.

    A. Jalaukan, S.M. Aldowaib, A.S. Hamed, B.G. Shohany, R. Etefagh, A.K. Zak, Iran. J. Mater. Sci. Eng. 16(4), 53–62 (2019)

    Google Scholar 

  47. 47.

    D.D. Purkayastha, M.G. Krishna, V. Madhurima, Mater. Lett. 124, 21–24 (2014)

    Article  Google Scholar 

  48. 48.

    D.D. Purkayastha, R. Brahma, V. Madhurima, Bull Mater Sci 38, 203–208 (2015)

    Article  Google Scholar 

  49. 49.

    A. Cannavale, F. Fiorito, M. Manca, G. Tortorici, R. Cingolani, G. Gigli, Environment 45, 1233–1243 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the research department of the University of Guilan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. Rozati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yousefi, M., Rozati, S.M. & Najafi, N. Investigation of the effect of temperature on the structural, optical, electrical, and self-cleaning properties of ITO thin films. Appl. Phys. A 126, 523 (2020). https://doi.org/10.1007/s00339-020-03695-z

Download citation

Keywords

  • ITO
  • APCVD
  • Physical properties
  • Self cleaning