The effect of B2O3/CdO substitution on structural, thermal, and optical properties of new black PVB/Cd semiconducting oxide glasses

Abstract

Novel semiconducting P2O5–V2O5–(B2O3/CdO) oxide glasses containing high ratios of V2O5 and P2O5 were synthesized with melting–quenching method and their characterizations were performed. B2O3 were gradually replaced with CdO within the structure. Structural characteristics of the synthesized glasses were determined with XRD, SEM–EDS, and Fourier transform infrared spectroscopy (FTIR) with diamond ATR. Amorphous character of the glasses was determined with XRD and supported additionally with SEM images. The presence of CdO within the structure was confirmed with EDX spectrum. Structural units of vanadium, phosphate, and boron were determined with FTIR examination. CdO was observed to be present in the structure as a modifier. According to DSC data, glass transition (Tg), crystallization (Tc), melting (Tm) temperatures, and thermal stabilities (ΔT) were determined, and their relation with B2O3/CdO substitution was explained. According to DSC data, Tg decreased to 425 °C from 431 °C with the replacement of B2O3 with CdO; Tc, increased to 509 °C from 494 °C. Thermal stabilities of the synthesized glass samples increased to 84 °C from 63 °C. Transmittance and absorption spectra were obtained between the range of 200–3000 nm, and the transmittance belonging to the samples was observed to start around 1800 nm. Direct and indirect optical band gaps were determined with Tauc method. In addition, Urbach energies of the samples were determined and obtained results were evaluated. The newly synthesized cadmium–vanadium–phosphate glass is appropriate to be used as an absorbent layer in solar energy systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    G. Kılıç, Değ̮işik bileşimli camların hazırlanması, fiziksel ve optik özelliklerinin incelenmesi, Ph.D. Thesis, in, Osmangazi Üniversitesi, Eskişehir, Turkey (2006)

  2. 2.

    R.B. Rao, N. Veeraiah, Phys. B Condens. Matter 348, 256–271 (2004)

    ADS  Article  Google Scholar 

  3. 3.

    V. Kundu, R. Dhiman, D. Goyal, A. Maan, Optoelectron. Adv. Mat. 2, 428–432 (2008)

    Google Scholar 

  4. 4.

    D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A. Singh, G. Bhikshamaiah, J Non Cryst. Solids 354, 5573–5579 (2008)

    ADS  Article  Google Scholar 

  5. 5.

    M. Toderaş, S. Filip, I. Ardelean, J. Optoelectron. Adv. Mater. 8, 1121–1123 (2006)

    Google Scholar 

  6. 6.

    J. Schwarz, H. Ticha, J. Optoelectron. Adv. Mater. 5, 69–74 (2003)

    Google Scholar 

  7. 7.

    N. Nagaraja, T. Sankarappa, M.P. Kumar, J. Non Cryst. Solids 354, 1503–1508 (2008)

    ADS  Article  Google Scholar 

  8. 8.

    M.A. Chaudhry, M. Altaf, Mater. Lett. 34, 213–216 (1998)

    Article  Google Scholar 

  9. 9.

    A. Al-Hajry, A. Al-Shahrani, M. El-Desoky, Mater. Chem. Phys. 95, 300–306 (2006)

    Article  Google Scholar 

  10. 10.

    B.I. Sharma, P. Robi, A. Srinivasan, Mater. Lett. 57, 3504–3507 (2003)

    Article  Google Scholar 

  11. 11.

    A. Ghosh, S. Bhattacharya, A. Ghosh, J. Non Cryst. Solids 490, 480–483 (2010)

    Google Scholar 

  12. 12.

    D.M. Tawati, M.J.B. Adlan, M.J. Abdullah, J. Non Cryst. Solids 357, 2152–2155 (2011)

    ADS  Article  Google Scholar 

  13. 13.

    S. Mandal, A. Ghosh, Phys. Rev. B 49, 3131 (1994)

    ADS  Article  Google Scholar 

  14. 14.

    M.P. Kumar, T. Sankarappa, Optoelectron. Adv. Mat. 2, 237–241 (2008)

    Google Scholar 

  15. 15.

    N. Mott, J. Non Cryst. Solids 1, 1–17 (1968)

    ADS  Article  Google Scholar 

  16. 16.

    I. Austin, N.F. Mott, Adv. Phys. 18, 41–102 (1969)

    ADS  Article  Google Scholar 

  17. 17.

    S. Sen, A. Ghosh, J. Non Cryst. Solids 258, 29–33 (1999)

    ADS  Article  Google Scholar 

  18. 18.

    Y. Moustafa, G. El-Damrawi, M. Meikhail, Mans. Sci. Bull. C (Nat. Sci.) 20, 71 (1993)

    Google Scholar 

  19. 19.

    G. El-Damrawi, Y. Moustafa, M. Meikhail, Mans. Sci. Bull. C (Nat. Sci.) 20, 83–97 (1993)

    Google Scholar 

  20. 20.

    K. Singh, J. Ratnam, Solid State Ion. 31, 221–226 (1988)

    Article  Google Scholar 

  21. 21.

    A. Mekki, G. Khattak, D. Holland, M. Chinkhota, L. Wenger, J. Non Cryst. Solids 318, 193–201 (2003)

    ADS  Article  Google Scholar 

  22. 22.

    V. Sudarsan, S. Kulshreshtha, J. Non Cryst. Solids 258, 20–28 (1999)

    ADS  Article  Google Scholar 

  23. 23.

    F. Ezz-Eldin, Nucl. Instrum. Methods Phys. Res. B 159, 166–175 (1999)

    ADS  Article  Google Scholar 

  24. 24.

    W. Sung, J. Won, J. Lee, H. Kim, Mol. Cryst. Liq. Cryst. 499, 234/[556]–241/[563] (2009)

  25. 25.

    H. Ebendorff-Heidepriem, D. Ehrt, Opt. Mater. 19, 351–363 (2002)

    ADS  Article  Google Scholar 

  26. 26.

    H. Ebendorff-Heidepriem, C. Riziotis, E. Taylor, Novel photosensitive glasses. 2002 Glass Odyssey: 6th ESG Conference, Montpellier, France (2002)

  27. 27.

    E. Assem, I. Elmehasseb, J. Mater. Sci. 46, 2071–2076 (2011)

    ADS  Article  Google Scholar 

  28. 28.

    G. Devidas, T. Sankarappa, B. Chougule, G. Prasad, J. Non Cryst. Solids 353, 426–434 (2007)

    ADS  Article  Google Scholar 

  29. 29.

    U. Chanshetti, V. Sudarsan, M. Jogad, T. Chondhekar, Phys. B Condens. Matter 406, 2904–2907 (2011)

    ADS  Article  Google Scholar 

  30. 30.

    B. Sharma, D. Dube, A. Mansingh, J. Non Cryst. Solids 65, 39–51 (1984)

    ADS  Article  Google Scholar 

  31. 31.

    E. Culea, A. Nicula, I. Bratu, Phys. Status Solidi A Appl. Res. 83, K15–K18 (1984)

    ADS  Article  Google Scholar 

  32. 32.

    N. Ichinose, Y. Nakai, J Non Cryst Solids 203, 353–358 (1996)

    ADS  Article  Google Scholar 

  33. 33.

    E. Assem, Key Engineering Materials (Trans Tech Publications, Stäfa, 2005), pp. 327–332

    Google Scholar 

  34. 34.

    F. Salman, N. Shash, H.A. El-Haded, M. El-Mansy, J. Phys. Chem. Solids 63, 1957–1966 (2002)

    ADS  Article  Google Scholar 

  35. 35.

    A. Gonçalves, E. Lopes, G. Delaizir, J. Vaney, B. Lenoir, A. Piarristeguy, A. Pradel, J. Monnier, P. Ochin, C. Godart, J. Solid State Chem. 193, 26–30 (2012)

    ADS  Article  Google Scholar 

  36. 36.

    A. Ghosh, Phys. Rev. B 42, 5665 (1990)

    ADS  Article  Google Scholar 

  37. 37.

    G. Kilic, E. Aral, Gazi Univ. J. Sci. 22, 129–139 (2009)

    Google Scholar 

  38. 38.

    Y. Rammah, G. Kilic, R. El-Mallawany, U.G. Issever, F. El-Agawany, J. Non Cryst. Solids 533, 119905 (2020)

    ADS  Article  Google Scholar 

  39. 39.

    N. Elkhoshkhany, R. El-Mallawany, E. Syala, Ceram. Int. 42, 19218–19224 (2016)

    Article  Google Scholar 

  40. 40.

    M. El-Shaarawy, T. El-Assawy, Mater. Chem. Phys. 62, 1–8 (2000)

    Article  Google Scholar 

  41. 41.

    S. Laila, S. Supardan, A. Yahya, J Non Cryst Solids 367, 4–22 (2013)

    ADS  Article  Google Scholar 

  42. 42.

    S. Kundu, B. Satpati, T. Kar, S.K. Pradhan, J. Hazard. Mater. 339, 161–173 (2017)

    Article  Google Scholar 

  43. 43.

    S. Sindhu, S. Sanghi, S. Rani, A. Agarwal, V. Seth, Mater. Chem. Phys. 107, 236–243 (2008)

    Article  Google Scholar 

  44. 44.

    A.D. Raj, T. Pazhanivel, P.S. Kumar, D. Mangalaraj, D. Nataraj, N. Ponpandian, Curr. Appl. Phys. 10, 531–537 (2010)

    ADS  Article  Google Scholar 

  45. 45.

    P. Anantha, K. Hariharan, Mater. Chem. Phys. 89, 428–437 (2005)

    Article  Google Scholar 

  46. 46.

    C. Ivascu, A.T. Gabor, O. Cozar, L. Daraban, I. Ardelean, J. Mol. Struct. 993, 249–253 (2011)

    ADS  Article  Google Scholar 

  47. 47.

    U.G. Işsever, G. Kilic, M. Peker, T. Ünaldi, A.Ş. Aybek, J. Mater. Sci. Mater. Electron. 30, 15156–15167 (2019)

    Article  Google Scholar 

  48. 48.

    Q. Jiao, X. Yu, X. Xu, D. Zhou, J. Qiu, J. Solid State Chem. 202, 65–69 (2013)

    ADS  Article  Google Scholar 

  49. 49.

    V. Kundu, R. Dhiman, A. Maan, D. Goyal, Adv. Condens. Matter Phys. 2008, 937054 (2008)

    Article  Google Scholar 

  50. 50.

    S. Rada, E. Culea, M. Rada, P. Pascuta, V. Maties, J. Mater. Sci. 44, 3235–3240 (2009)

    ADS  Article  Google Scholar 

  51. 51.

    S. Rada, V. Dan, M. Rada, E. Culea, J. Non Cryst. Solids 356, 474–479 (2010)

    ADS  Article  Google Scholar 

  52. 52.

    K. Selvaraju, K. Marimuthu, J. Alloys Compd. 553, 273–281 (2013)

    Article  Google Scholar 

  53. 53.

    S. Balamurugan, A. Balu, K. Usharani, M. Suganya, S. Anitha, D. Prabha, S. Ilangovan, Pac. Sci. Rev. A Natl. Sci. Eng. 18, 228–232 (2016)

    Google Scholar 

  54. 54.

    M. Thirumoorthi, J.T.J. Prakash, J. Asian Ceram. Soc. 4, 39–45 (2016)

    Article  Google Scholar 

  55. 55.

    G. Khattak, A. Mekki, L. Wenger, J. Non Cryst. Solids 355, 2148–2155 (2009)

    ADS  Article  Google Scholar 

  56. 56.

    M. Tošic, V. Zivanovic, N. Blagojevic, Phys. Chem. Glasses 45, 160–162 (2004)

    Google Scholar 

  57. 57.

    A. Kaur, A. Khanna, V.G. Sathe, F. Gonzalez, B. Ortiz, Phase Transit. 86, 598–619 (2013)

    Article  Google Scholar 

  58. 58.

    G. Kilic, U.G. Issever, E. Ilik, Mater. Res. Express 6, 065907 (2019)

    ADS  Article  Google Scholar 

  59. 59.

    M. Altaf, M.A. Chaudhry, M. Zahid, J. Res. Sci. 14, 253–259 (2003)

    Google Scholar 

Download references

Acknowledgements

The research activity was financially supported by Eskisehir Osmangazi University, Scientific Research Council with Grant number 2012-19030.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gokhan Kilic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kilic, G., Ilik, E., Issever, U.G. et al. The effect of B2O3/CdO substitution on structural, thermal, and optical properties of new black PVB/Cd semiconducting oxide glasses. Appl. Phys. A 126, 507 (2020). https://doi.org/10.1007/s00339-020-03689-x

Download citation

Keywords

  • Semiconducting glass
  • Borophosphate glass
  • Vanadium–phophate glass
  • V2O5
  • CdO