Iron deficient BaNixMnxFe12−2xO19 (x = 0.0–0.5) hexagonal plates: single-domain magnetic structure and dielectric properties

Abstract

The current investigation was carried out in order to present the structural, magnetic and dielectric properties of BaNixMnxFe12−2xO19 (x = 0.0–0.5) (BNMFO) hexagonal microplates prepared via hydrothermal method followed by calcination at 950 °C for 5 h. The X-ray diffraction patterns of x = 0.0–0.5 contents confirmed the formation of hexagonal phases. The morphology and grain size of the BNMFO was examined by the field emission of scanning electron microscope. The results indicated that the BNMFO exhibited the hexagonal platelet like grains of size ranging from 2.4 to 3.5 µm. Two peaks were formed in the Fourier transform infrared spectra at 585 and 427 cm−1 and indicated the formation of metal–oxygen bonds. It was observed that the band gap was decreased with the increase in ‘x’. From the room temperature M–H curves, it was observed that the high saturation magnetization (45.8–53.9 emu/g) was recorded for all samples. Further, the coercive field was decreased from 3133 to 1098 Oe as a function of ‘x’. The real and imaginary parts of dielectric permittivity parameters were found to be increased with the increase in ‘x’.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    X. Gao, Y. Du, X. Liu, P. Xu, X. Han, Synthesis and characterization of Co–Sn substituted barium ferrite particles by a reverse microemulsion technique. Mater. Res. Bull. 46, 643 (2011)

    Article  Google Scholar 

  2. 2.

    N. Raghuram, T. Subba Rao, K. Chandra Babu Naidu, Electrical and impedance spectroscopy properties of hydrothermally synthesized Ba0.2Sr0.8yLayFe12O19 (y = 0.2–0.8) nanorods. Ceram. Int. 46, 5894–5906 (2020)

    Article  Google Scholar 

  3. 3.

    J.-L. Mattei, C.N. Le, A. Chevalier, A. Maalouf, N. Noutehou, P. Queffelec, V. Laur, A simple process to obtain anisotropic self-biased magnets constituted of stacked barium ferrite single domain particles. J. Magn. Magn. Mater. 451, 208–213 (2018)

    ADS  Article  Google Scholar 

  4. 4.

    A. Moitra, S. Kim, S.-G. Kim, S.C. Erwin, Y.-K. Hong, J. Park, Defect formation energy and magnetic properties of aluminum-substituted M-type barium hexaferrite. Comput. Condens. Matter 1, 45–50 (2014)

    Article  Google Scholar 

  5. 5.

    S. Kanagesan, S. Jesurani, R. Velmurugan, T. Kalaivani, Preparation and magnetic properties of Ni–Zr doped barium strontium hexaferrite. J. Mater. Sci. Mater. Electron. 23, 952–955 (2012)

    Article  Google Scholar 

  6. 6.

    W.S. Castro, R.R. Corrêa, P.I. Paulim Filho, J.M. Rivas Mercury, A.A. Cabral, Dielectric and magnetic characterization of barium hexaferrite ceramics. Ceram. Int. 41, 241–246 (2015)

    Article  Google Scholar 

  7. 7.

    P. Behera, S. Ravi, Effect of Ni doping on structural, magnetic and dielectric properties of M type barium hexaferrite. Solid State Sci. 89, 139–149 (2019)

    ADS  Article  Google Scholar 

  8. 8.

    S. Singhal, A. Garg, K. Chandra, Evolution of the magnetic properties during the thermal treatment of nanosize BaMFe11O19 (M = Fe Co, Ni and Al) obtained through aerosol route. J. Magn. Magn. Mater. 285, 193–198 (2005)

    ADS  Article  Google Scholar 

  9. 9.

    H. Sözeri et al., Magnetic, dielectric and microwave properties of M–Ti substituted barium hexaferrites (M = Mn2+, Co2+, Cu2+, Ni2+, Zn2+). Ceram. Int. 40, 8645–8657 (2014)

    Article  Google Scholar 

  10. 10.

    M.V. Rane et al., Magnetic properties of Ni–Zr substituted barium ferrite. J. Magn. Magn. Mater. 195, L256–L260 (1999)

    Article  Google Scholar 

  11. 11.

    G. Angeles et al., Magnetic studies of NiSn-substituted barium hexaferrites processed by attrition, milling. J. Magn. Magn. Mater. 270, 77–83 (2004)

    ADS  Article  Google Scholar 

  12. 12.

    P. Meng et al., Tunable complex permeability and enhanced microwave absorption properties of BaNixCo1–xTiFe10O19. J. Alloy. Compd. 628, 75–80 (2015)

    Article  Google Scholar 

  13. 13.

    D. Vinnik et al., Growth, structural and magnetic characterization of Co- and Ni-substituted barium hexaferrite single crystals. J. Alloy. Compd. 628, 480–484 (2015)

    Article  Google Scholar 

  14. 14.

    Widyastuti, N. Sasria, A. Marsha Alviani, M. Dwi Febri Rand, P. Vania Mitha P, Ni and Zn substituted M-type barium hexaferrite processed by sol–gel auto combustion method. in Journal of Physics: Conference Series, vol. 877 (IOP Publishing, 2017), p. 012015

  15. 15.

    C. Robert, Pullar, hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)

    Article  Google Scholar 

  16. 16.

    T. Kimura, Magnetoelectric hexaferrites. Annu. Rev. Condens. Matter Phys. 3, 93–110 (2012)

    Article  Google Scholar 

  17. 17.

    V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu et al., Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009)

    ADS  Article  Google Scholar 

  18. 18.

    M.J. Iqbal, R.A. Khan, S. Takeda, S. Mizukami, T. Miyazaki, W-type hexaferrite nanoparticles: a consideration for microwave attenuation at wide frequency band of 0.5–10 GHz. J. Alloys Compd 509, 7618–7624 (2011)

    Article  Google Scholar 

  19. 19.

    W. Li, X. Qiao, M. Li, T. Liu, H. Peng, La and Co substituted M-type barium ferrites processed by sol–gel combustion synthesis. Mater. Res. Bull. 48, 4449–4453 (2013)

    Article  Google Scholar 

  20. 20.

    M.J. Iqbal, S. Farooq, Extraordinary role of Ce–Ni elements on the electrical and magnetic properties of Sr–Ba M-type hexaferrites. Mater. Res. Bull. 44, 2050–2055 (2009)

    Article  Google Scholar 

  21. 21.

    W.Y. Zhao, P. Wei, H.B. Cheng, X.F. Tang, Q.J. Zhang, F.T.I.R. Spectra, Lattice shrinkage and magnetic properties of CoTi substituted M-type barium hexaferrite nanoparticles. J. Am. Ceram. Soc. 90, 2095–2103 (2007)

    Article  Google Scholar 

  22. 22.

    T. Vidya Sagar, T. Subba Rao, K. Chandra Babu Naidu, Effect of calcination temperature on optical, magnetic and dielectric properties of sol–gel synthesized Ni0.2Mg0.8−xZnxFe2O4 (x = 0.0–0.8). Ceram. Int. 46, 11515–11529 (2020)

    Article  Google Scholar 

  23. 23.

    N. Raghuram, T. Subba Rao, K. Chandra Babu Naidu, Magnetic properties of hydrothermally synthesized Ba1−xSrxFe12O19 (x = 0.0–0.8) nanomaterials. Appl. Phys. A 125, 839 (2019). https://doi.org/10.1007/s00339-019-3143-2

    ADS  Article  Google Scholar 

  24. 24.

    N. Boda, G. Boda, K. Chandra Babu Naidu, M. Srinivas, K.M. Batoo, D. Ravinder, A.P. Reddy, Effect of rare earth elements on low temperature magnetic properties of Ni and Co-ferrite nanoparticles. J. Magn. Magn. Mater. 473, 228–235 (2019)

    ADS  Article  Google Scholar 

  25. 25.

    A. Gafoor, K. Chandra Babu Naidu, D. Ravinder, K.M. Batoo, S.F. Adil, M. Khan, Synthesis of nano-NiXFe2O4 (X = Mg/Co) by citrate-gel method: structural, morphological and low-temperature magnetic properties. Appl. Phys. A 126, 39 (2020). https://doi.org/10.1007/s00339-019-3225-1

    ADS  Article  Google Scholar 

  26. 26.

    Y. Liu, M.G.B. Drew, Y. Liu, Preparation and magnetic properties of barium ferrites substituted with manganese, cobalt, and tin. J. Magn. Magn. Mater. 323, 945–953 (2011)

    ADS  Article  Google Scholar 

  27. 27.

    H. Zhang, D. Zeng, Z. Liu, The law of approach to saturation in ferromagnets originating from the magnetocrystalline anisotropy. J. Magn. Magn. Mater. 322, 2375–2380 (2010)

    ADS  Article  Google Scholar 

  28. 28.

    M. Tasleem, M. Hashim, K. Chandra Babu Naidu, S.A. Ali, D. Ravinder, Optical and electronic properties of copper and cobalt substituted nano SrBaFe12O19 synthesized by sol–gel autocombustion method. Appl. Phys. A 125, 305 (2019). https://doi.org/10.1007/s00339-019-2618-5

    ADS  Article  Google Scholar 

  29. 29.

    N. Raghuram, T. Subba Rao, N. Suresh Kumar, K. Chandra Babu Naidu, H. Manjunatha, B. Ramakrishna Rao, A. Khan, A.M. Asiri, BaSrLaFe12O19 nanorods: optical and magnetic properties. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03342-6

    Article  Google Scholar 

  30. 30.

    M. Waqar, M.A. Rafiq, T.A. Mirza, F.A. Khalid, A. Khaliq, M.S. Anwar, M. Saleem, Synthesis and properties of nickel-doped nanocrystalline barium hexaferrite ceramic materials. Appl. Phys. A 124, 286 (2018)

    ADS  Article  Google Scholar 

  31. 31.

    N. Raghuram, T.S. Rao, K. Naidu, Investigations on functional properties of hydrothermally synthesized Ba1−xSrxFe12O19 (x = 0.0–0.8) nanoparticles. Mater. Sci. Semicond. Process. 94, 136–150 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

My greatest acknowledgement to INUP, IISC Bangalore for providing the PPMS electromagnet, FESEM, XRD,UV DRS and FTIR characterization tools equipment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Chandra Babu Naidu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chandra Sekhar, D., Subba Rao, T. & Chandra Babu Naidu, K. Iron deficient BaNixMnxFe12−2xO19 (x = 0.0–0.5) hexagonal plates: single-domain magnetic structure and dielectric properties. Appl. Phys. A 126, 511 (2020). https://doi.org/10.1007/s00339-020-03681-5

Download citation

Keywords

  • Hexaferrite
  • Optical band gap
  • Magnetic properties
  • Dielectric properties