Flexible MXene/EPDM rubber with excellent thermal conductivity and electromagnetic interference performance


In this study, a rubber composite was prepared based on two-dimensional (2D) material (MXene) and ethylene propylene diene rubber (EPDM). The MXene was efficiently prepared by etching Ti3AlC2 powder with LiF-HCl solution and subsequent vacuum drying, and the dispersion of MXene in EPDM was improved by optimizing the grinding process, ultrasonic stripping and stirring method. In the process of exploring the electrical conductivity of this material system, the composite exhibits low percolation threshold of 2.7 wt%, a high conductivity of 106 Sm−1 and superior thermal conductivity of 1.57 W/m K at the MXene content of 6 wt%. In addition, MXene (6 wt%)/EPDM with 0.3-mm thick exhibits an EMI shielding performances (SE) up to 48 dB in the X-band (8.2–12.4 GHz) and 52 dB in the Ku-band (12.4–18 GHz) (SE) which are much better than the electromagnetic shielding properties of other rubber blends, and these properties indicate MXene/EPDM composite has great potential for versatile applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    B. Hao et al., Lightweight graphite membranes with excellent electromagnetic interference shielding effectiveness andcr thermal conductivity. J. Mater. Sci.: Mater. Electron. 30(7), 6734–6744 (2019)

    Google Scholar 

  2. 2.

    P. Kumar, A. Kumar, K.Y. Cho et al., An asymmetric electrically conducting self-aligned graphene/polymer composite thin film for efficient electromagnetic interference shielding[J]. AIP Adv. 7(1), 015103 (2017)

    ADS  Article  Google Scholar 

  3. 3.

    B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding[J]. Adv. Func. Mater. 24(28), 4542–4548 (2014)

    Article  Google Scholar 

  4. 4.

    R. Xiaohu, C. Yankui, Electromagnetic and microwave absorbing properties of carbonyl iron/BaTiO_3 composite absorber for matched load of isolator[J]. J. Magn. Magn. Mater. 393, 293–296 (2015)

    Article  Google Scholar 

  5. 5.

    S.P. Gairola et al., Retracted: EMI shielding effectiveness of expanded graphite and reduced graphene oxide. J. Chin. Chem. Soc. 66(7), 785 (2019)

    Article  Google Scholar 

  6. 6.

    Y. Li, B. Shen, X.L. Pei, Y.G. Zhang, D. Yi, W.T. Zhai, L.H. Zhang, X.C. Wei, W.G. Zheng, Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 100, 375–385 (2016)

    Article  Google Scholar 

  7. 7.

    S. Maiti, S. Suin, N.K. Shrivastava et al., A strategy to achieve high electromagnetic interference shielding and ultra low percolation in multiwall carbon nanotube–polycarbonate composites through selective localization of carbon nanotubes[J]. Rsc. Adv. 4(16), 7979 (2014)

    Article  Google Scholar 

  8. 8.

    Z. Ning et al., Flexible and transparent graphene/silver-nanowires composite ?lm for high electromagnetic interference shielding effectiveness. Sci. Bull. 4(30), 540–546 (2019)

    Google Scholar 

  9. 9.

    D. Jasvir et al., EMI shielding properties of laminated graphene and PbTiO 3 reinforced poly(3,4-ethylenedioxythiophene) nanocomposites. Compos. Sci. Technol. 165, 222–230 (2018)

    Article  Google Scholar 

  10. 10.

    H. Furong, W. Yimeng, W. Peiyu et al., Oxidized multiwall carbon nanotube/silicone foam composites with effective electromagnetic interference shielding and high gamma radiation stability[J]. Rsc. Adv. 8(43), 24236–24242 (2018)

    Article  Google Scholar 

  11. 11.

    F. Ren, D. Song, Z. Li et al., Synergistic effect of graphene nanosheets and carbonyl iron–nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites[J]. J. Mater. Chem. C 6, 1476–1486 (2018)

    Article  Google Scholar 

  12. 12.

    S. Lu et al., Highly stretchable and sensitive sensor based on GnPs/EPDM composites with excellent heat dissipation performance. Appl. Phys. A 125(6), 425 (2019)

    ADS  Article  Google Scholar 

  13. 13.

    Y. Liu et al., Graphene enhanced flexible expanded graphite film with high electric, thermal conductivities and EMI shielding at low content. Carbon 135, 435–445 (2018)

    Article  Google Scholar 

  14. 14.

    P. Zhang et al., Fabrication of novel MXene (Ti3C2)/polyacrylamide nanocomposite hydrogels with enhanced mechanical and drug release properties. Soft Matter 16(1), 162–169 (2020)

    ADS  Article  Google Scholar 

  15. 15.

    Z. Wang et al., Recent advances on metal-free graphene-based catalysts for the production of industrial chemicals. Front. Chem. Eng. China 12(4), 855–866 (2018)

    Google Scholar 

  16. 16.

    M. Ahmadi et al., 2D transition metal dichalcogenide nanomaterials: advances, opportunities, and challenges in multi-functional polymer nanocomposites. J. Mater. Chem. 8(3), 845–883 (2020)

    Article  Google Scholar 

  17. 17.

    G. Xu et al., Solvent-regulated preparation of well-intercalated Ti3C2Tx MXene nanosheets and application for highly effective electromagnetic wave absorption. Nanotechnology 29(35), 355201 (2018)

    Article  Google Scholar 

  18. 18.

    T. Li et al., A flexible pressure sensor based on an MXene–textile network structure. J. Mater. Chem. C 7(4), 1022–1027 (2019)

    Article  Google Scholar 

  19. 19.

    M. Naguib, V.N. Mochalin, M.W. Barsoum et al., 25th anniversary article: mxenes: a new family of two-dimensional materials[J]. Adv. Mater. 26(7), 992–1005 (2014)

    Article  Google Scholar 

  20. 20.

    X. Zhan et al., MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5, 235–258 (2020)

    ADS  Article  Google Scholar 

  21. 21.

    J. Halim et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016)

    ADS  Article  Google Scholar 

  22. 22.

    A. Mishra et al., Isolation of pristine MXene from Nb4AlC3 MAX phase: a first-principles study. Phys. Chem. Chem. Phys. 18(16), 11073–11080 (2016)

    Article  Google Scholar 

  23. 23.

    S. Ankita et al., MXene: an emerging material for sensing and biosensing. TrAC Trends Anal. Chem. 105, 424–435 (2018)

    Article  Google Scholar 

  24. 24.

    Q. Jiang, All pseudocapacitive MXene-RuO_2 asymmetric supercapacitors. Adv. Energy Mater. 8(13), 1703043 (2018)

    Article  Google Scholar 

  25. 25.

    Y. Liu et al., Excellent catalytic activity of a two-dimensional Nb4C3Tx (MXene) on hydrogen storage of MgH2. Appl. Surf. Sci. 493, 431–440 (2019)

    ADS  Article  Google Scholar 

  26. 26.

    H. Wu, L.T. Drzal, Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties[J]. Carbon 50(3), 1135–1145 (2012)

    Article  Google Scholar 

  27. 27.

    Y. Qing, W. Zhou, F. Luo et al., Titanium carbide (MXene) nanosheets as promising microwave absorbers[J]. Ceram. Int. 42(14), 16412–16416 (2016)

    Article  Google Scholar 

  28. 28.

    Y.J. Wan, P.L. Zhu, S.H. Yu et al., Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy[J]. Carbon 122, 74–81 (2017)

    Article  Google Scholar 

  29. 29.

    T. Tomaegovi et al., Effect of the common solvents on UV-modified photopolymer and EPDM flexographic printing plates and printed ink films. Coatings 10(2), 136 (2020)

    Article  Google Scholar 

  30. 30.

    S. Azizi et al., Electrical and thermal phenomena in low-density polyethylene/carbon black composites near the percolation threshold. J. Appl. Polym. Sci. 136(6), 47043 (2019)

    Article  Google Scholar 

  31. 31.

    Reduced Graphene Oxides, Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures[J]. Adv. Mater. 26(21), 3484–3489 (2014)

    Article  Google Scholar 

  32. 32.

    Y.B. Pottathara, V. Bobnar, S. Gorgieva et al., Mechanically strong, flexible and thermally stable graphene oxide/nanocellulosic films with enhanced dielectric properties[J]. RSC Adv. 6(54), 49138–49149 (2016)

    Article  Google Scholar 

  33. 33.

    Zhang et al., Preparation and characterization of graphene paper for electromagnetic interference shielding[J]. Carbon 82(30), 353–359 (2015)

    Article  Google Scholar 

  34. 34.

    A. Chatterjee et al., Heat conduction model based on percolation theory for thermal conductivity of composites with high volume fraction of filler in base matrix. Int. J. Thermal Sci. 136, 389–395 (2019)

    Article  Google Scholar 

  35. 35.

    B. Rezaei et al., High conductive ITO-free flexible electrode based on Gr-grafted-CNT/Au NPs for optoelectronic applications. Opt. Mater. 89, 441–451 (2019)

    ADS  Article  Google Scholar 

  36. 36.

    K. Gnanasekaran et al., A unified view on nanoscale packing, connectivity, and conductivity of CNT networks. Adv. Funct. Mater. 29(13), 1807901 (2019)

    Article  Google Scholar 

  37. 37.

    F. Wang, Y. Zhang, B.B. Zhang et al., Enhanced electrical conductivity and mechanical properties of ABS/EPDM composites filled with graphene[J]. Compos. Part B Eng. 83, 66–74 (2015)

    Article  Google Scholar 

  38. 38.

    C.S. Boland, U. Khan, C. Backes et al., Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites[J]. ACS Nano 8(9), 8819–8830 (2014)

    Article  Google Scholar 

  39. 39.

    A. Bu et al., Plasma electrolysis spraying Al2O3 coating onto quartz fiber fabric for enhanced thermal conductivity and stability. Appl. Ences 10(2), 702 (2020)

    Google Scholar 

  40. 40.

    Q. Li et al., Ti3C2 MXene as a new nanofiller for robust and conductive elastomer composites. Nanoscale 11(31), 14712–14719 (2019)

    Article  Google Scholar 

  41. 41.

    Y. Yang et al., Thermal conductivity and mechanical properties of polyimide composites with mixed fillers of BN flakes and SiC @SiO2 whiskers. Polym. Eng. Ence 5, 1044–1053 (2020)

    Article  Google Scholar 

  42. 42.

    G. Manasoglu et al., Electrical resistivity and thermal conductivity properties of grapheneヽoated woven fabrics. J. Appl. Polym. Ence 11, 48024 (2019)

    Article  Google Scholar 

  43. 43.

    P. Liu, X. Zhang, H. Jia et al., High mechanical properties, thermal conductivity and solvent resistance in graphene oxide/styrene-butadiene rubber nanocomposites by engineering carboxylated acrylonitrile-butadiene rubber[J]. Compos. Part B Eng. 130, 257–266 (2017)

    Article  Google Scholar 

  44. 44.

    C. Shen et al., Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites. J. Mater. Sci. Technol. 35(1), 36–43 (2019)

    Article  Google Scholar 

  45. 45.

    S. Lu et al., Flexible GnPs/EPDM with excellent thermal conductivity and electromagnetic interference shielding properties. NANO 14(06), 1950075 (2019)

    Article  Google Scholar 

  46. 46.

    F. Lv et al., High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite. Carbon 149, 281–289 (2019)

    Article  Google Scholar 

  47. 47.

    Q. Zhang, J. Liu, Anisotropic thermal conductivity and photodriven phase change composite based on RT100 infiltrated carbon nanotube array. Solar Energy Mater Solar Cells 190, 1–5 (2019)

    Article  Google Scholar 

  48. 48.

    L.C. Jia, Y.K. Li, D.X. Yan, Flexible and efficient electromagnetic interference shielding materials fromground tirerubber[J]. Carbon 121, 267–273 (2017)

    Article  Google Scholar 

  49. 49.

    N. Joseph, C. Janardhanan, M.T. Sebastian, Electromagnetic interference shielding properties of butyl rubber-single walled carbon nanotube composites[J]. Compos. Sci. Technol. 101, 139–144 (2014)

    Article  Google Scholar 

  50. 50.

    S. Kumar, K.P. Arti et al., Steady microwave absorption behavior of two-dimensional metal carbide MXene and Polyaniline composite in X-band[J]. J. Magn. Magn. Mater. 488, 165364 (2019)

    Article  Google Scholar 

  51. 51.

    L. Jia-Qi, Z. Sai, Z. Hao-Bin, Z. Deng, L. Li, Yu. Zhong-Zhen, Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding[J]. Compos. Sci. Technol. 182, 107754 (2019)

    Article  Google Scholar 

  52. 52.

    K. Raagulan, R. Braveenth, L. Ro Lee et al., Fabrication of flexible, lightweight, magnetic mushroom gills and coral-like mxene–carbon nanotube nanocomposites for EMI shielding application[J]. Nanomaterials 9(4), 519 (2019)

    Article  Google Scholar 

  53. 53.

    Q.W. Wang, H.B. Zhang, J. Liu et al., Multifunctional and water-resistant mxene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Adv. Funct. Mater. 29(7), 1806819 (2019)

    Article  Google Scholar 

  54. 54.

    Z. Zhan et al., Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. J. Mater. Chem. C 7(32), 9820–9829 (2019)

    Article  Google Scholar 

  55. 55.

    W. Lei et al., Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application[J]. Compos. Part B Eng. 171, 111–118 (2019)

    Article  Google Scholar 

Download references


The financial contributions are gratefully acknowledged. This work was financially supported by National Natural Science Foundation of China (U1733123, 11902204), Special Professor Project in Liaoning Province, Natural science foundation of Liaoning Province (20180550751), Education Department of Liaoning’s Item (JYT19041). The financial contributions are gratefully acknowledged.

Author information



Corresponding author

Correspondence to Shaowei Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Li, B., Ma, K. et al. Flexible MXene/EPDM rubber with excellent thermal conductivity and electromagnetic interference performance. Appl. Phys. A 126, 513 (2020). https://doi.org/10.1007/s00339-020-03675-3

Download citation


  • Two-dimensional materials (MXene)/EPDM
  • Percolation threshold
  • Thermal conductivity
  • Electromagnetic interference shielding