An insight into the low doping efficiency of Al in sol–gel-derived ZnO:Al films: role of the dopant chemical state


We prepared aluminum-doped zinc oxide (ZnO:Al, AZO) films by a sol–gel method and investigated the effect of doping on the electrical properties of AZO films in the Al doping concentration range of 0.5–3.0 at.%. The negative effect of Al dopants on the carrier mobility counteracted their positive effect on the carrier concentration and the resistivity of the films remained almost constant at the optimum Al doping level of 0.5 at.%. Moreover, the doping efficiency of Al dopant decreased with increasing doping level and the maximum efficiency was not higher than 50% even at the optimum doping concentration. The microstructure and chemical composition of the films were examined by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy to elucidate the mechanism behind the low doping efficiency of Al dopant in the sol–gel-derived AZO films. The reason was attributed to the passivation of the dopant in two forms, defect complex nAlZnVZn originating from the dopant–defect reaction in the ZnO grains and aluminum oxide phase segregating at the ZnO grain boundaries.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    A. Yildiz, S. Uzun, N. Serin, T. Serin, Scripta Mater. 113, 23 (2016)

    Article  Google Scholar 

  2. 2.

    R.G. Gorden, MRS Bull. 25, 52 (2000)

    Article  Google Scholar 

  3. 3.

    Y.Q. Chen, X.J. Zheng, X. Feng, Nanotechnology 21, 055708 (2010)

    ADS  Article  Google Scholar 

  4. 4.

    N. Baydogan, O. Karacasu, H. Cimenoglu, J. Sol-Gel Sci. Technol. 61, 620 (2012)

    Article  Google Scholar 

  5. 5.

    Z.B. Tang, J. Lin, L.S. Wang, J.S. Luo, J.L. Zhao, H.B. Li, Y.J. Wang, X.Y. Liu, Nanotechnology 28, 365201 (2017)

    ADS  Article  Google Scholar 

  6. 6.

    A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, M. Okuda, Jpn. J. Appl. Phys. 35, L56 (1996)

    ADS  Article  Google Scholar 

  7. 7.

    H. Hagendorfer, K. Lienau, S. Nishiwaki, C.M. Fella, L. Kranz, A.R. Uhl, D. Jaeger, L. Luo, C. Gretener, S. Buecheler, Y.E. Romanyuk, A.N. Tiwari, Adv. Mater. 26, 632 (2014)

    Article  Google Scholar 

  8. 8.

    S. Edinger, N. Bansal, M. Bauch, R.A. Wibowo, R. Hamid, G. Trimmel, T. Dimopoulos, J. Mater. Sci. 52, 9410 (2017)

    ADS  Article  Google Scholar 

  9. 9.

    K. Ellmer, A. Bikowski, J. Phys. D: Appl. Phys. 49, 413002 (2016)

    Article  Google Scholar 

  10. 10.

    M. Ohyama, H. Kozuka, T. Yoko, J. Am. Ceram. Soc. 81, 1622 (1998)

    Article  Google Scholar 

  11. 11.

    H. Damm, P. Adriaensens, C. Dobbelaere, B. Capon, K. Elen, J. Drijkoningen, B. Conings, J.V. Manca, J. Dhaen, C. Detavernier, P.C.M.M. Magusin, J. Hadermann, A. Hardy, M.K. van Bael, Chem. Mater. 26, 5839 (2014)

    Article  Google Scholar 

  12. 12.

    M.H. Nateq, R. Ceccato, Materials 12, 1744 (2019)

    ADS  Article  Google Scholar 

  13. 13.

    I. Hamberg, G. Granqvist, J. Appl. Phys. 60, R123 (1986)

    ADS  Article  Google Scholar 

  14. 14.

    E. Burstein, Phys. Rev. 93, 632 (1954)

    ADS  Article  Google Scholar 

  15. 15.

    K.H. Kim, K.C. Park, D.Y. Ma, J. Appl. Phys. 81, 7764 (1997)

    ADS  Article  Google Scholar 

  16. 16.

    M.J. Alam, D.C. Cameron, J. Vac. Sci. Technol. A 19, 1642 (2001)

    ADS  Article  Google Scholar 

  17. 17.

    A. Bikowski, K. Ellmer, J. Appl. Phys. 116, 143704 (2014)

    ADS  Article  Google Scholar 

  18. 18.

    T. Minami, MRS Bull. 25, 38 (2000)

    Article  Google Scholar 

  19. 19.

    M.H. Yoon, S.H. Lee, H.L. Park, H.K. Kim, M.S. Jang, J. Mater. Sci. Lett. 21, 1703 (2002)

    Article  Google Scholar 

  20. 20.

    K. Shirouzu, T. Ohkusa, M. Hotta, N. Enomoto, J. Hojo, J. Ceram. Soc. Jpn. 115, 254 (2007)

    Article  Google Scholar 

  21. 21.

    J.Y. Noh, H. Kim, Y.S. Kim, C.H. Park, J. Appl. Phys. 113, 153703 (2013)

    ADS  Article  Google Scholar 

  22. 22.

    R.B.H. Tahar, N.B.H. Tahar, J. Appl. Phys. 92, 4498 (2002)

    ADS  Article  Google Scholar 

  23. 23.

    E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, Appl. Nanosci. 5, 993 (2015)

    ADS  Article  Google Scholar 

  24. 24.

    G.M. Nam, M.S. Kwon, Journal of Information Display 10, 24 (2009)

    Article  Google Scholar 

  25. 25.

    M.U. Shahid, K.M. Deen, A. Ahmad, M.A. Akram, M. Aslam, W. Akhtar, Appl. Nanosci. 6, 235 (2016)

    ADS  Article  Google Scholar 

  26. 26.

    T. Schuler, M.A. Aegerter, Thin Solid Films 351, 125 (1999)

    ADS  Article  Google Scholar 

  27. 27.

    B. Hu, J. Xu, J. Wang, B. Liu, B. Du, Mater. Lett. 232, 51 (2018)

    Article  Google Scholar 

  28. 28.

    L. Meng, X.G. Yang, H.Y. Chai, Z.R. Lv, T. Yang, Thin Solid Films 672, 186 (2019)

    ADS  Article  Google Scholar 

  29. 29.

    N. Bandaru, E. Panda, J. Alloy. Compd. 789, 573 (2019)

    Article  Google Scholar 

  30. 30.

    K.D.A. Kumar, V. Ganesh, M. Shkir, S. AlFaify, S. Valanarasu, J. Mater. Sci. Mater. Electron. 29, 887 (2018)

    Article  Google Scholar 

  31. 31.

    K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, S. AlFaify, Appl. Phys. A 123, 801 (2017)

    ADS  Article  Google Scholar 

  32. 32.

    S. Ullah, F. De Matteis, I. Davoli, J. Electron. Mater. 46, 6609 (2017)

    ADS  Article  Google Scholar 

  33. 33.

    S. Peng, Y.K. Tang, L.M. Jin, Y. Wang, L.Y. Ma, F.F. Cao, Surf. Coat. Technol. 310, 251 (2017)

    Article  Google Scholar 

  34. 34.

    S. Ghosh, J. Chakraborty, Thin Solid Films 605, 173 (2016)

    ADS  Article  Google Scholar 

  35. 35.

    X.Y. Zhao, H.P. Shen, C. Zhou, S.W. Lin, X. Li, X.C. Zhao, X.Y. Deng, J.B. Li, H. Lin, Thin Solid Films 605, 208 (2016)

    ADS  Article  Google Scholar 

  36. 36.

    K. Vernieuwe, J. Feys, D. Cuypers, K. De Buysser, J. Am. Ceram. Soc. 99, 1353 (2016)

    Article  Google Scholar 

  37. 37.

    F.A. Garcés, N. Budini, R.D. Arce, J.A. Schmidt, Thin Solid Films 574, 162 (2015)

    ADS  Article  Google Scholar 

  38. 38.

    S. Maniv, W.D. Westwood, E. Colombini, J. Vac. Sci. Technol. 20, 162 (1982)

    ADS  Article  Google Scholar 

  39. 39.

    J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, Q.L. Liang, J. Appl. Phys. 100, 073714 (2006)

    ADS  Article  Google Scholar 

  40. 40.

    A. Michels, E. Krill, H. Ehrhardt, R. Birringer, D.T. Wu, Acta. Mater. 47, 2143 (1999)

    Article  Google Scholar 

  41. 41.

    J.T. Thienprasert, S. Rujirawat, W. Klysubun, J.N. Duenow, T.J. Coutts, S.B. Zhang, D.C. Look, S. Limpijumnong, Phys. Rev. Lett. 110, 055502 (2013)

    ADS  Article  Google Scholar 

  42. 42.

    J.E. Stehr, W.M. Chen, B.G. Svensson, I.A. Buyanova, J. Appl. Phys. 119, 105702 (2016)

    ADS  Article  Google Scholar 

  43. 43.

    M.W. Zhu, H. Huang, J. Gong, C. Sun, X. Jiang, J. Appl. Phys. 102, 043106 (2007)

    ADS  Article  Google Scholar 

  44. 44.

    C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, Handbook of X-ray photoelectron spectroscopy, 1st edn. (Perkin Elmer Corporation, Eden Prairie, 1979), pp. 54–55

    Google Scholar 

  45. 45.

    A. Momot, M.N. Amini, G. Reekmans, D. Lamoen, B. Partoens, D.R. Slocombe, K. Elen, P. Adriaensens, A. Hardy, M.K. Van Bael, Phys. Chem. Chem. Phys. 19, 27866 (2017)

    Article  Google Scholar 

  46. 46.

    S.B. Zhang, S.-H. Wei, A. Zunger, Phys. Rev. B 63, 075205 (2001)

    ADS  Article  Google Scholar 

  47. 47.

    P. Erhart, K. Albe, A. Klein, Phys. Rev. B 73, 205203 (2006)

    ADS  Article  Google Scholar 

  48. 48.

    F.F. Cao, C.P. Li, M.J. Li, H.J. Li, X. Huang, B.H. Yang, Appl. Surf. Sci. 447, 173 (2018)

    ADS  Article  Google Scholar 

  49. 49.

    M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134 (2000)

    ADS  Article  Google Scholar 

  50. 50.

    C. Singh, E. Panda, RSC Adv. 6, 48910 (2016)

    Article  Google Scholar 

  51. 51.

    S.R. Dhage, A.C. Badgujar, J. Alloy. Compd. 763, 504 (2018)

    Article  Google Scholar 

  52. 52.

    H. Aguraa, A. Suzukia, T. Matsushitaa, T. Aokia, M. Okudab, Thin Solid Films 445, 263 (2003)

    ADS  Article  Google Scholar 

  53. 53.

    S.Y. Myong, S.J. Baik, C.H. Lee, W.Y. Cho, K.S. Lim, Jpn. J. Appl. Phys. 36, L1078 (1987)

    Article  Google Scholar 

  54. 54.

    F. Khan, S.H. Baek, J.H. Kim, J. Alloy. Compd. 709, 819 (2017)

    Article  Google Scholar 

  55. 55.

    V. Anand, A. Sakthivelu, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, H. Algarni, J. Sol Gel Sci. Technol. 86, 293 (2018)

    Article  Google Scholar 

  56. 56.

    K. Lin, Y.Y. Chen, K.Y. Chou, J. Sol-Gel Sci. Technol. 49, 238 (2009)

    Article  Google Scholar 

Download references


This work is financially supported by the National Natural Science of Foundation of China (nos. 51922026, 51571057, 51202256), the Liaoning Provincial Department of Education (JYT19063) and the Fundamental Research Funds for the Central Universities (no. N170204012).

Author information



Corresponding author

Correspondence to C. Z. Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, M.W., Ma, H.B., Jin, P.H. et al. An insight into the low doping efficiency of Al in sol–gel-derived ZnO:Al films: role of the dopant chemical state. Appl. Phys. A 126, 484 (2020).

Download citation


  • Transparent conductive oxide
  • Sol–gel process
  • Aluminum doping
  • Doping efficiency
  • Chemical state