Application of Fe2O3/CeO2 nanocomposites for the purification of aqueous media

Abstract

The paper presents the results of a study of the applicability of Fe2O3/CeO2 nanoparticles for purification of aqueous media from manganese ions, by its absorption on the surface of nanoparticles, with further removal from the aqueous medium by magnetic separation. According to the data obtained, the structures under study are a mixture of two phases: the rhombohedral phase Fe2O3, which is characteristic of the hematite structure, and the hexagonal phase CeO2 with a phase ratio of 1:2. During corrosion tests, it was found that acid solutions with pH = 1 and 0.1% HCl, which varies from 0.0004 to 0.0007 nm/day, have the highest degradation rate and a decrease in the degree of ordering of the crystal structure of nanoparticles. Moreover, in the case of corrosion tests in PBS solutions, the degradation rate was 0.0002 nm/day. According to the data obtained, it was found that the absorption of manganese ions on the surface of nanoparticles leads to the formation of highly disordered or amorphous-like inclusions. In this case, an increase in the residence time in the medium leads to partial degradation of the nanoparticles, which leads to a decrease in the degree of purification.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Y. Zhang et al., Stability of commercial metal oxide nanoparticles in water. Water Res. 42(8–9), 2204–2212 (2008)

    Article  Google Scholar 

  2. 2.

    A. Dauletbekova et al., Synthesis of ZnO nanocrystals in SiO2/Si track template: effect of electrodeposition parameters on structure. Physica Status Solidi (b) 256(5), 1800408 (2019)

    ADS  Article  Google Scholar 

  3. 3.

    J. Kim, B. Van der Bruggen, The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. 158(7), 2335–2349 (2010)

    Article  Google Scholar 

  4. 4.

    H. Seifi et al., A review on current trends in thermal analysis and hyphenated techniques in the investigation of physical, mechanical and chemical properties of nanomaterials. J. Anal. Appl. Pyrol. 149, 104840 (2020)

    Article  Google Scholar 

  5. 5.

    Y. Orooji et al., Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering. Ceram. Int. 45(13), 16288–16296 (2019)

    Article  Google Scholar 

  6. 6.

    Y. Orooji et al., Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photo-catalytic performance through sunlight and antimicrobial activity. J. Hazard. Mater. 389, 122079 (2020)

    Article  Google Scholar 

  7. 7.

    V.S. Gharahshiran et al., Samarium-impregnated nickel catalysts over SBA-15 in steam reforming of CH4 process. J. Ind. Eng. Chem. 86, 73–80 (2020)

    Article  Google Scholar 

  8. 8.

    F. Motahari et al., NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Adv. 4(53), 27654–27660 (2014)

    Article  Google Scholar 

  9. 9.

    M. Sabet, M. Salavati-Niasari, O. Amiri, Using different chemical methods for deposition of CdS on TiO2 surface and investigation of their influences on the dye-sensitized solar cell performance. Electrochim. Acta 117, 504–520 (2014)

    Article  Google Scholar 

  10. 10.

    M. Salavati-Niasari, Ship-in-a-bottle synthesis, characterization and catalytic oxidation of styrene by host (nanopores of zeolite-Y)/guest ([bis (2-hydroxyanil) acetylacetonato manganese (III)]) nanocomposite materials (HGNM). Microporous Mesoporous Mater. 95(1-3), 248–256 (2006)

    Article  Google Scholar 

  11. 11.

    S.U. Ofoegbu, M.G.S. Ferreira, M.L. Zheludkevich, Galvanically stimulated degradation of carbon-fiber reinforced polymer composites: a critical review. Materials 12(4), 651 (2019)

    ADS  Article  Google Scholar 

  12. 12.

    A. Mashentseva et al., Comparative catalytic activity of PET track-etched membranes with embedded silver and gold nanotubes. Nucl. Instrum. Methods Phys. Res. Sect. B 365, 70–74 (2015)

    ADS  Article  Google Scholar 

  13. 13.

    I.V. Korolkov et al., The effect of oxidation pretreatment of polymer template on the formation and catalytic activity of Au/PET membrane composites. Chem. Pap. 71(12), 2353–2358 (2017)

    Article  Google Scholar 

  14. 14.

    N.J. Reddy et al., Comparative study of antioxidant and catalytic activity of silver and gold nanoparticles synthesized from Costus pictus leaf extract. J. Mater. Sci. Technol. 31(10), 986–994 (2015)

    Article  Google Scholar 

  15. 15.

    F. Yingju, Z. Liu, J. Zhan, Synthesis of starch-stabilized Ag nanoparticles and Hg 2+ recognition in aqueous media. Nanoscale Res. Lett. 4(10), 1230 (2009)

    ADS  Article  Google Scholar 

  16. 16.

    J.-S. Lee, M.S. Han, C.A. Mirkin, Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 46(22), 4093–4096 (2007)

    Article  Google Scholar 

  17. 17.

    K. Yang-Rae et al., Highly sensitive gold nanoparticle-based colorimetric sensing of mercury (II) through simple ligand exchange reaction in aqueous media. ACS Appl. Mater. Interfaces. 2(1), 292–295 (2010)

    Article  Google Scholar 

  18. 18.

    L. Xianghong et al., 3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors. J. Mater. Chem. 21(2), 349–356 (2011)

    Article  Google Scholar 

  19. 19.

    T.D. Zh et al., Modification of Fe3O4 nanoparticles with carboranes. Mater. Res. Exp. 5(10), 105011 (2018)

    Article  Google Scholar 

  20. 20.

    N.L. Torad et al., Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 10(10), 2096–2107 (2014)

    Article  Google Scholar 

  21. 21.

    L. Mohammed et al., Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology 30, 1–14 (2017)

    Article  Google Scholar 

  22. 22.

    P.A. Murade et al., Acetone gas-sensing performance of Sr-doped nanostructured LaFeO3 semiconductor prepared by citrate sol–gel route. Curr. Appl. Phys. 11(3), 451–456 (2011)

    ADS  Article  Google Scholar 

  23. 23.

    Q. Qi et al., 6 Sensitive ethanol sensors fabricated from p-type La0. 7Sr0. 3FeO3 nanoparticles and n-type SnO2 nanofibers. Sensors Actuators B Chem. 191, 59–665 (2014)

    Article  Google Scholar 

  24. 24.

    X. Li et al., Single-crystalline α-Fe2O3 oblique nanoparallelepipeds: high-yield synthesis, growth mechanism and structure enhanced gas-sensing properties. Nanoscale 3(2), 718–724 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    G. Sholpan et al., Structure, electrical properties and luminescence of ZnO nanocrystals deposited in SiO2/Si track templates. Radiat. Meas. 125, 52–56 (2019)

    Article  Google Scholar 

  26. 26.

    T.I. Zubar et al., Control of growth mechanism of electrodeposited nanocrystalline NiFe films. J. Electrochem. Soc. 166(6), D173–D180 (2019)

    Article  Google Scholar 

  27. 27.

    K. Dukenbayev et al., Fe3O4 nanoparticles for complex targeted delivery and boron neutron capture therapy. Nanomaterials 9(4), 494 (2019)

    Article  Google Scholar 

  28. 28.

    Li Liu et al., Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex. Acta Biomater. 103, 281–292 (2020)

    Article  Google Scholar 

  29. 29.

    Y. Hou, Xu Zhichuan, S. Sun, Controlled synthesis and chemical conversions of FeO nanoparticles. Angew. Chem. Int. Ed. 46(33), 6329–6332 (2007)

    Article  Google Scholar 

  30. 30.

    Y. Janbutrach, S. Hunpratub, E. Swatsitang, Ferromagnetism and optical properties of La 1–x Al x FeO 3 nanopowders. Nanoscale Res. Lett. 9(1), 498 (2014)

    ADS  Article  Google Scholar 

  31. 31.

    H.T. Hai et al., Facile synthesis of Fe3O4 nanoparticles by reduction phase transformation from γ-Fe2O3 nanoparticles in organic solvent. J. Colloid Interface Sci 341(1), 194–199 (2010)

    ADS  Article  Google Scholar 

  32. 32.

    C. Feng et al., Ethanol sensing properties of LaCoxFe1−xO3 nanoparticles: effects of calcination temperature co-doping, and carbon nanotube-treatment. Sensors Actuators B Chem. 155(1), 232–238 (2011)

    Article  Google Scholar 

  33. 33.

    P.-J. Yao et al., Preparation and characterization of La 1–x Sr x FeO 3 materials and their formaldehyde gas-sensing properties. J. Mater. Sci. 48(1), 441–450 (2013)

    ADS  Article  Google Scholar 

  34. 34.

    J. Ameta et al., Synthesis and characterization of CeFeO 3 photocatalyst used in photocatalytic bleaching of gentian violet. J. Iran. Chem. Soc. 6(2), 293–299 (2009)

    Article  Google Scholar 

  35. 35.

    Z. Gu et al., Enhanced reducibility and redox stability of Fe 2O3 in the presence of CeO2 nanoparticles. RSC Adv. 4(88), 47191–47199 (2014)

    Article  Google Scholar 

  36. 36.

    S. Kuai, Z. Nan, Formation mechanism of monodisperse Ce3+ substituted ZnFe2O4 nanoparticles. J. Alloy. Compd. 602, 228–234 (2014)

    Article  Google Scholar 

  37. 37.

    S. Jabbarzare et al., A study on the synthesis and magnetic properties of the cerium ferrite ceramic. J. Alloy. Compd. 694, 800–807 (2017)

    Article  Google Scholar 

  38. 38.

    D.S. Klygach et al., Magnetic and microwave properties of carbonyl iron in the high frequency range. J. Magn. Magn. Mater. 490, 165493 (2019)

    Article  Google Scholar 

  39. 39.

    Z. Xiaoli et al., Removal of fluoride from aqueous media by Fe3O4@ Al (OH) 3 magnetic nanoparticles. J. Hazard. Mater. 173(1-3), 102–109 (2010)

    Article  Google Scholar 

  40. 40.

    C. Jiang, R. Wang, W. Ma, The effect of magnetic nanoparticles on Microcystis aeruginosa removal by a composite coagulant. Colloids Surf. A 369(1-3), 260–267 (2010)

    Article  Google Scholar 

  41. 41.

    E. Kaniukov et al., FeNi nanotubes: perspective tool for targeted delivery. Appl. Nanosci. 9(5), 835–844 (2019)

    ADS  Article  Google Scholar 

  42. 42.

    Z. He et al., Adsorption of Sb (III) and Sb (V) on freshly prepared ferric hydroxide (FeOxHy). Environ. Eng. Sci. 32(2), 95–102 (2015)

    Article  Google Scholar 

  43. 43.

    Li Wang et al., Highly efficient As (V)/Sb (V) removal by magnetic sludge composite: synthesis, characterization, equilibrium, and mechanism studies. RSC Adv. 6(49), 42876–42884 (2016)

    Article  Google Scholar 

  44. 44.

    X. Li, X. Dou, J. Li, Antimony (V) removal from water by iron-zirconium bimetal oxide: performance and mechanism. J. Environ. Sci. 24(7), 1197–1203 (2012)

    Article  Google Scholar 

  45. 45.

    P. Mehdizadeh et al., Green synthesis using cherry and orange juice and characterization of TbFeO3 ceramic nanostructures and their application as photocatalysts under UV light for removal of organic dyes in water. J. Cleaner Prod. 252, 119765 (2020)

    Article  Google Scholar 

  46. 46.

    M. Mousavi-Kamazani, Z. Zarghami, M. Salavati-Niasari, Facile and novel chemical synthesis, characterization, and formation mechanism of copper sulfide (Cu2S, Cu2S/CuS, CuS) nanostructures for increasing the efficiency of solar cells. J. Phys. Chem. C 120(4), 2096–2108 (2016)

    Article  Google Scholar 

  47. 47.

    R. Ansari, M. Hassanzadeh, F. Ostovar, Arsenic removal from water samples using CeO2/Fe2O3 nanocomposite. Int. J. Nanosci. Nanotechnol. 13(4), 335–345 (2017)

    Google Scholar 

  48. 48.

    Z. Qi et al., Synthesis of Ce (III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution. J. Hazard. Mater. 329, 193–204 (2017)

    ADS  Article  Google Scholar 

  49. 49.

    Z. Qi et al., Adsorption combined with superconducting high gradient magnetic separation technique used for removal of arsenic and antimony. J. Hazard. Mater. 343, 36–48 (2018)

    Article  Google Scholar 

  50. 50.

    Z. Qi et al., Enhanced oxidative and adsorptive capability towards antimony by copper-doping into magnetite magnetic particles. RSC Adv. 6(71), 66990–67001 (2016)

    Article  Google Scholar 

  51. 51.

    J. Li et al., Antimony contamination, consequences and removal techniques: a review. Ecotoxicol. Environ. Saf. 156, 125–134 (2018)

    Article  Google Scholar 

  52. 52.

    M. Salavati-Niasari, Host (nanocavity of zeolite-Y)–guest (tetraaza [14] annulene copper (II) complexes) nanocomposite materials: synthesis, characterization and liquid phase oxidation of benzyl alcohol. J. Mol. Catal. A Chem. 245(1-2), 192–199 (2006)

    Article  Google Scholar 

  53. 53.

    F. Davar et al., Thermal decomposition route for synthesis of Mn3O4 nanoparticles in presence of a novel precursor. Polyhedron 29(7), 1747–1753 (2010)

    Article  Google Scholar 

  54. 54.

    M. Salavati-Niasari et al., Oxidation of cyclohexene with tert-butylhydroperoxide catalysted by host (nanocavity of zeolite-Y)/guest (Mn (II), Co (II), Ni (II) and Cu (II) complexes of N, N′-bis (salicylidene) phenylene-1, 3-diamine) nanocomposite materials (HGNM). J. Mol. Catal. A Chem. 261(2), 147–155 (2007)

    Article  Google Scholar 

  55. 55.

    K.K. Kadyrzhanov et al., Synthesis and properties of ferrite-based nanoparticles. Nanomaterials 9(8), 1079 (2019)

    Article  Google Scholar 

  56. 56.

    A.L. Kozlovskiy et al., Study of phase transformations, structural, corrosion properties and cytotoxicity of magnetite-based nanoparticles. Vacuum 163, 236–247 (2019)

    ADS  Article  Google Scholar 

  57. 57.

    A. Kozlovskiy, I. Kenzhina, M. Zdorovets, Synthesis, phase composition and magnetic properties of double perovskites of A (FeM) O4–x type (A= Ce; M= Ti). Ceram. Int. 45(7), 8669–8676 (2019)

    Article  Google Scholar 

  58. 58.

    V.S. Rusakov et al., Phase transformations as a result of thermal annealing of nanocomposite Fe–Ni/Fe–Ni–O particles. Ceram. Int. 46(2), 1586–1595 (2020)

    Article  Google Scholar 

  59. 59.

    K.K. Kadyrzhanov et al., Study of magnetic properties of Fe100-xNix nanostructures using the mössbauer spectroscopy method. Nanomaterials 9(5), 757 (2019)

    Article  Google Scholar 

  60. 60.

    A. Kozlovskiy et al., Mossbauer research of Fe/Co nanotubes based on track membranes. Nucl. Instrum. Methods Phys. Res. Sect. B 381, 103–109 (2016)

    ADS  Article  Google Scholar 

  61. 61.

    A. Kozlovskiy et al., Study of Ni/Fe nanotube properties. Nucl. Instrum. Methods Phys. Res. Sect. B 365, 663–667 (2015)

    ADS  Article  Google Scholar 

  62. 62.

    EYu Kaniukov et al., Degradation mechanism and way of surface protection of nickel nanostructures. Mater. Chem. Phys. 223, 88–97 (2019)

    Article  Google Scholar 

Download references

Funding

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (No. BR05235921).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. L. Kozlovskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Egizbek, K., Kozlovskiy, A.L., Ludzik, K. et al. Application of Fe2O3/CeO2 nanocomposites for the purification of aqueous media. Appl. Phys. A 126, 477 (2020). https://doi.org/10.1007/s00339-020-03665-5

Download citation

Keywords

  • Nanoparticles
  • Chemical precipitation
  • Purification of aqueous media
  • Degradation
  • Oxide structures