Critical points in photoluminescence spectra and their relation with phase transition in Nb-doped SrTiO3


Luminescence spectra are extremely sensitive to variations in structural environment; thus, result of structural change, such as phase transition, can be observed via luminescence intensity. The temperature dynamic of photoluminescence in the Nb-doped SrTiO3 demonstrates two critical points at 115 and 160 K, which correspond to temperatures of structural phase transitions for the bulk and the surface of SrTiO3, respectively. The absence of a hysteresis effect in the photoluminescence emission points out the correspondence of the critical points to a second-order phase transition. Similar critical behaviours were also observed in oxygen-deficient SrTiO3, confirming a relationship between the PL and phase transition. The existence of peaks in the temperature coefficient of resistivity at the same temperatures also confirms the correlation between photoluminescence and phase transition in the Nb-doped SrTiO3, providing a simple non-contact method to detect phase transitions in luminescence materials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    X. Lin, G. Bridoux, A. Gourgout, G. Seyfarth, S. Krämer, M. Nardone, B. Fauqué, K. Behnia, Phys. Rev. Lett. 112, 207002 (2014)

    ADS  Article  Google Scholar 

  2. 2.

    A. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhès, R. Weht, X.G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fèvre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy, M.J. Rozenberg, Nature 469, 189–193 (2011)

    ADS  Article  Google Scholar 

  3. 3.

    J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom, Nature 430, 758–761 (2004)

    ADS  Article  Google Scholar 

  4. 4.

    D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa, M. Takano, Nat. Mater. 4, 816–819 (2005)

    ADS  Article  Google Scholar 

  5. 5.

    G. Shirane, Y. Yamada, Phys. Rev. 177, 858 (1969)

    ADS  Article  Google Scholar 

  6. 6.

    P. Calvani, M. Capizzi, F. Donato, S. Lupi, P. Maselli, D. Peschiaroli, Phys. Rev. B 47, 8917 (1993)

    ADS  Article  Google Scholar 

  7. 7.

    J.L.M. van Mechelen, D. van der Marel, C. Grimaldi, A.B. Kuzmenko, N.P. Armitage, N. Reyren, H. Hagemann, I.I. Mazin, Phys. Rev. Lett. 100, 226403 (2008)

    ADS  Article  Google Scholar 

  8. 8.

    D. van der Marel, J.L.M. van Mechelen, I.I. Mazin, Phys. Rev. B 84, 205111 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    A.H. MacDonald, Phys. Rev. Lett. 44, 489 (1980)

    ADS  Article  Google Scholar 

  10. 10.

    A.H. MacDonald, R. Taylor, D.J.W. Geldart, Phys. Rev. B 23, 2718 (1981)

    ADS  Article  Google Scholar 

  11. 11.

    D. Kan, R. Kanda, Y. Kanemitsu, Y. Shimakawa, M. Takano, T. Terashima, A. Ishizumi, Appl. Phys. Lett. 88, 191916 (2006)

    ADS  Article  Google Scholar 

  12. 12.

    Y. Yamada, Y. Kanemitsu, Phys. Rev. B 82, 121103 (2010)

    ADS  Article  Google Scholar 

  13. 13.

    Y. Yamada, H. Yasuda, T. Tayagaki, Y. Kanemitsu, Phys. Rev. Lett. 102, 247401 (2009)

    ADS  Article  Google Scholar 

  14. 14.

    T. Kohmoto, D. Ikeda, X. Liang, T. Moriyasu, Phys. Rev. B 87, 214301 (2013)

    ADS  Article  Google Scholar 

  15. 15.

    M. Capizzi, A. Frova, Phys. Rev. Lett. 25, 1298 (1970)

    ADS  Article  Google Scholar 

  16. 16.

    M.L. Crespillo, J.T. Graham, F. Agulló-López, Y. Zhang, W.J. Weber, Mater. Res. Lett. 7, 298–303 (2019)

    Article  Google Scholar 

  17. 17.

    S.E. Rowley, L.J. Spalek, R.P. Smith, M.P.M. Dean, M. Itoh, J.F. Scott, G.G. Lonzarich, S.S. Saxena, Nat. Phys. 10, 367–372 (2014)

    Article  Google Scholar 

  18. 18.

    D. Biswasa, A.K. Meikapa, S.K. Chattopadhyaya, S.K. Chatterjeea, M. Ghoshb, Solid State Commun. 134, 223–228 (2004)

    ADS  Article  Google Scholar 

  19. 19.

    H. Okamura, M. Matsubara, K. Tanaka, K. Fukui, M. Terakami, H. Nakagawa, Y. Ikemoto, T. Moriwaki, H. Kimura, T. Nanba, J. Phys. Soc. Jpn. 75, 023703 (2006)

    ADS  Article  Google Scholar 

  20. 20.

    D. Bäuerle, W. Rehwald, Solid State Commun. 27, 1343–1346 (1978)

    ADS  Article  Google Scholar 

  21. 21.

    Z. Salman, R.F. Kiefl, K.H. Chow, M.D. Hossain, T.A. Keeler, S.R. Kreitzman, C.D.P. Levy, R.I. Miller, T.J. Parolin, M.R. Pearson, H. Saadaoui, J.D. Schultz, M. Smadella, D. Wang, W.A. MacFarlane, Phys. Rev. Lett. 96, 147601 (2006)

    ADS  Article  Google Scholar 

  22. 22.

    L.D. Landau, E.M. Lifshitz, Statistical Physics (Addison-Wesley, Boston, 1958)

    Google Scholar 

  23. 23.

    M. Egilmez, M.M. Saber, I. Fan, K.H. Chow, J. Jung, Phys. Rev. B 78, 172405 (2008)

    ADS  Article  Google Scholar 

  24. 24.

    W.X. Zhou, J. Zhou, C.J. Li, S.W. Zeng, Z. Huang, H.J. Harsan Ma, K. Han, Z.S. Lim, D.Y. Wan, L.C. Zhang, T. Venkatesan, Y.P. Feng Ariando, Phys. Rev. B 94, 195122 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    F. Schoofs, M. Egilmez, T. Fix, J.L. MacManus-Driscoll, M.G. Blamire, Appl. Phys. Lett. 100, 081601 (2012)

    ADS  Article  Google Scholar 

Download references


This work was supported by FRG AS1801 Grant and the Common Research Facility at the American University of Sharjah (AUS), the AUS-Common Research Facility, and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1D1A1B07051406).

Author information



Corresponding author

Correspondence to Vadim Sh. Yalishev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yalishev, V.S., Ganeev, R.A., Alnaser, A.S. et al. Critical points in photoluminescence spectra and their relation with phase transition in Nb-doped SrTiO3. Appl. Phys. A 126, 483 (2020).

Download citation


  • SrTiO3 single crystal
  • Temperature-activated photoluminescence
  • Phase transition