Effect of Si substitution on the Structural, Magnetic and Magnetocaloric Properties of Ni–Mn–In Heusler alloys


The effect of partial substitution of manganese by silicon in Ni47Mn40−xSixIn13 (x = 1, 2, 3) on the structural (martensitic), magnetic transitions and associated magnetocaloric properties around the martensitic transition of these alloys, was investigated. The alloys exhibited the single austenite structure at the room temperature. The lattice contraction was observed with an increase in Si content, thereby inducing the FM and AFM interactions between manganese atoms, which further influence the magnetic and martensitic transitions. The increase in Si concentration was observed with the decrease in valence electron to atom ratio (e/a ratio) and thus influencing the martensitic transitions. The transition temperatures such as martensitic transition (TM) and the Curie transition (TC) of the austenite phase decrease with increasing Si-content. With the increase in Si content from x = 1 to 3, the TM was found to decrease from 259 to 169 K. A high magnetic entropy change (∆S)M of 12.3, 3.1 and 30.6 J kg−1 K−1 was observed for the x = 1, 2, and 3 alloys at their respective martensitic transitions for a magnetic field of 2 T.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    E. Warburg, Ann. Phys. Chem. 13, 141 (1881)

    ADS  Article  Google Scholar 

  2. 2.

    P. Debye, Ann. Phys. 81, 1154 (1926)

    Article  Google Scholar 

  3. 3.

    W.F. Giauque, J. Am. Chem. Soc. 49, 1864 (1927)

    Article  Google Scholar 

  4. 4.

    A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and its Applications (IOP, Bristol, 2003)

    Google Scholar 

  5. 5.

    P.J. von Ranke, N.A. de Oliveira, B.P. Alho, E.J.R. Plaza, V.S.R. de Sousa, L. Caron, M.S. Reis, J. Phys. Condens. Matter 21, 056004 (2009)

    ADS  Article  Google Scholar 

  6. 6.

    V.K. Pecharsky, K.A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997)

    ADS  Article  Google Scholar 

  7. 7.

    V.K. Pecharsky, K.A. Gschneidner Jr., Appl. Phys. Lett. 70, 3299 (1997)

    ADS  Article  Google Scholar 

  8. 8.

    O. Beckmann, L. Lundgren, in Handbook of Magnetic Materials, 6, ed. by H.J. Buschow (North Holland, Amsterdam, 1991)

    Google Scholar 

  9. 9.

    E. Bruck, O. Tegus, X.W. Li, F.R. de Boer, K.H.J. Buschow, Phys. B Condens. Matter 327, 431 (2003)

    ADS  Article  Google Scholar 

  10. 10.

    O. Tegus, E. Bruck, L. Zhang, B.K.H.J. Dagula, F. de Boer, R. Phys. B Condens. Matter 319, 174 (2002)

    ADS  Article  Google Scholar 

  11. 11.

    A. Fujita, S. Fujieda, Y. Hasegawa, K. Fukamichi, Phys. Rev. B 67, 104416 (2003)

    ADS  Article  Google Scholar 

  12. 12.

    F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, X.X. Zhang, Appl. Phys. Lett. 78, 3675 (2001)

    ADS  Article  Google Scholar 

  13. 13.

    N.V. Rama Rao, R. Gopalan, V. Chandrasekaran, K.G. Suresh, Appl. Phys. A 99, 265–270 (2010)

    ADS  Article  Google Scholar 

  14. 14.

    Z.D. Han, D.H. Wang, C.L. Zhang, H.C. Xuan, B.X. Gu, Y.W. Du, Appl. Phys. Lett. 90, 042507 (2007)

    ADS  Article  Google Scholar 

  15. 15.

    T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, Phys. Rev. B 73, 174413 (2006)

    ADS  Article  Google Scholar 

  16. 16.

    S. Chatterjee, S. Giri, S. Majumdar, S.K. De, Phys. Rev. B 77, 012404 (2008)

    ADS  Article  Google Scholar 

  17. 17.

    A.K. Pathak, M. Khan, B.R. Gautam, S. Stadler, I. Dubenko, N. Ali, J. Appl. Phys. 103, 07F315 (2008)

    Article  Google Scholar 

  18. 18.

    M. Khan, A.K. Pathak, M.R. Paudel, I. Dubenko, S. Stadler, N. Ali, J. Magn. Magn. Mater. 320, L21 (2008)

    ADS  Article  Google Scholar 

  19. 19.

    P.A. Bhobe, K.R. Priolkar, A.K. Nigam, Appl. Phys. Lett. 91, 242503–242505 (2007)

    ADS  Article  Google Scholar 

  20. 20.

    Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Appl. Phys. Lett. 85, 4358–4360 (2004)

    ADS  Article  Google Scholar 

  21. 21.

    H.C. Xuan, Y.X. Zheng, S.C. Ma, Q.Q. Cao, D.H. Wang, Y.W. Du, J. Appl. Phys. 108, 103920 (2010)

    ADS  Article  Google Scholar 

  22. 22.

    Z.H. Liu, S. Aksoy, M. Acet, J. Appl. Phys. 105, 033913 (2009)

    ADS  Article  Google Scholar 

  23. 23.

    S.K. Sarkar, A. Sarita, P.D. Babu, A. Biswas, V. Siruguri, M. Krishnan, J. Alloys Compd. 670, 281–288 (2016)

    Article  Google Scholar 

  24. 24.

    A.K. Pathak, M. Khan, I. Dubenko, S. Stadler, N. Ali, Appl. Phys. Lett. 90, 262504–262506 (2007)

    ADS  Article  Google Scholar 

  25. 25.

    S. Ghosh, P. Sen, K. Mandal, IEEE Trans. Magn. 54, 1–5 (2018)

    Article  Google Scholar 

  26. 26.

    S. Dwevedi, B. Tiwari, J. Alloy. Compd. 540, 16–20 (2012)

    Article  Google Scholar 

  27. 27.

    K. Oikawa, W. Ito, Y. Imano, Y. Sutou, R. Kainuma, K. Ishida, S. Okamoto, O. Kitakami, T. Kanomata, Appl. Phys. Lett. 88, 122507 (2006)

    ADS  Article  Google Scholar 

  28. 28.

    R. Das, A. Perumal, A. Srinivasan, IEEE Trans. Magn. 47, 2463–2465 (2011)

    ADS  Article  Google Scholar 

  29. 29.

    X.G. Zhaol, C.C. Hsieh, W.C. Chang, W. Liu, Z.D. Zhang, J. Phys. Conf. Ser. 266, 012128 (2011)

    Article  Google Scholar 

  30. 30.

    N.V. Rama Rao, V. Chandrasekaran, K.G. Suresh, J. Appl. Phys. 108, 043913 (2010)

    ADS  Article  Google Scholar 

  31. 31.

    C. Mahalakshmi, S. Vinodh Kumar, M. Muthuraman, S. Seenithurai, M. Mahendran, J. Mech. Adv. Mater. Struct. 23, 631 (2016)

    Article  Google Scholar 

  32. 32.

    G.R. Raji, A.P. Paulose, R.B. Job, S. Thomas, K.G. Suresh, M.R. Varma, Intermetallics 82, 59–67 (2017)

    Article  Google Scholar 

  33. 33.

    S. EsakkiMuthu, S. Singh, R. Thiyagarajan, G. KalaiSelvan, N.V. Rama Rao, M. Manivel Raja, S. Arumugam, J. Phys. D Appl. Phys. 46, 205001 (2013)

    ADS  Article  Google Scholar 

  34. 34.

    X.G. Zhao, C.C. Hsieh, W.C. Chang, W. Liu, Z.D. Zhang, J. Phys. Conf. Ser. 266, 012128 (2011)

    Article  Google Scholar 

  35. 35.

    T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Phys. Rev. B 72, 014412 (2005)

    ADS  Article  Google Scholar 

  36. 36.

    P.J. Brown, A.P. Gandy, K. Ishida, R. Kainuma, T. Kanomata, K.U. Neumann, K. Oikawa, B. Ouladdiaf, K.R.A. Ziebeck, J. Phys. Condens. Matter 18, 2249 (2006)

    ADS  Article  Google Scholar 

  37. 37.

    V.V. Khovailo, V.A. Chernenko, A.A. Cherechukin, T. Takagi, T. Abe, J. Magn. Magn. Mater. 272-276, 2067-2069 (2004)

    ADS  Article  Google Scholar 

  38. 38.

    K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)

    ADS  Article  Google Scholar 

  39. 39.

    V. Provenzano, A.J. Shapiro, R.D. Shull, Nature 429, 853 (2004)

    ADS  Article  Google Scholar 

  40. 40.

    B. Hernando, J.L. Sanchez Llamazares, V.M. Prida, D. Baldomir, D. Serantes, M. Ilyn, Appl. Phys. Lett. 94, 222502 (2009)

    ADS  Article  Google Scholar 

  41. 41.

    V.K. Sharma, M.K. Chattopadhyay, S.B. Roy, J. Phys. D Appl. Phys. 40, 1869–1873 (2007)

    ADS  Article  Google Scholar 

Download references


The authors thank Group Head and staff of Advanced Magnetics Group, DMRL for the constant support and encouragements. Authors also thank Director, DMRL for giving the necessary permission to publish this work.

Author information



Corresponding author

Correspondence to M. Manivel Raja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, N.P., Singh, M., Mahey, V. et al. Effect of Si substitution on the Structural, Magnetic and Magnetocaloric Properties of Ni–Mn–In Heusler alloys. Appl. Phys. A 126, 472 (2020). https://doi.org/10.1007/s00339-020-03651-x

Download citation


  • Magnetocaloric effect
  • Heusler alloy
  • Martensitic transition