A review on biological and biomimetic materials and their applications

Abstract

In the development of technology, a source of inspiration for mankind is the nature. Naturally, many biological surfaces having unique micro–nanostructures, such as lotus leaves, butterfly wings, rose petals and shark skin, exhibit skills and attribute beyond conventional engineering. These skills and characteristic properties are exploited by several scientists to produce bioinspired materials by mimicking biological materials. Scientists called these materials as biomimetic materials as they are developed by inspiration from nature. For the last few decades, an extensive research has been going on to introduce a wide variety of biomimetic materials which can exhibit advanced properties. This paper gives an overview of recently developed biomimetic materials such as Se-modified carbon nitride nanosheets, small intestinal submucosa, magnesium–strontium hydroxyapatite, dimethylglyoxime–urethane polyurethane, polydimethylsiloxane, Ag/Ag@AgCl/ZnO and PDTC(COOH)4/HA, along with their biological properties. In addition, the applications of the biomimetic and biological materials in various fields such as biomedical, oil–water separation, sensors, tissue engineering, genome technology and ultrasound imaging are also discussed.

This is a preview of subscription content, log in to check access.

Fig. 1

Copyright permission is taken from Ref. [18]

Fig. 2

Copyright permission is taken from Ref. [51]

Fig. 3

Copyright permission is taken from Ref. [59]

Fig. 4

Copyright permission is taken from Ref. [81]

Fig. 5

Copyright permission is taken from Ref. [100]

Fig. 6

Copyright permission is taken from Ref. [104]

Fig. 7

Copyright permission is taken from Ref. [126]

Fig. 8

Copyright permission is taken from Ref. [133]

Fig. 9

Copyright permission is taken from Ref. [141]

Fig. 10

Copyright permission is taken from Ref. [146]

References

  1. 1.

    Inspired by Biology, From Molecules to Materials to Machines (Committee on Biomolecular Materials and Processes, National Research Council of the National Academies) (The National Academies Press, Washington, DC, 2008)

    Google Scholar 

  2. 2.

    P. Forbes, The Gecko’s Foot: Bioinspiration Engineered from Nature (Fourth Estate, London, 2005)

    Google Scholar 

  3. 3.

    P.D. Calvert, Polymers for new materials. Polymer 35, 4484–4488 (1994)

    Article  Google Scholar 

  4. 4.

    N.A. Peppas, R.L. Langer, New challenges in biomaterials. Science 263(5154), 1715–1720 (1994)

    ADS  Article  Google Scholar 

  5. 5.

    R. Langer, D.A. Tirrell, Designing materials for biology and medicine. Nature 428(6982), 487–492 (2004)

    ADS  Article  Google Scholar 

  6. 6.

    R. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936). https://doi.org/10.1021/ie50320a024

    Article  Google Scholar 

  7. 7.

    A. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)

    Article  Google Scholar 

  8. 8.

    J. Zhang, X. Sheng, L. Jiang, The dewetting properties of lotus leaves. Langmuir 25, 1371–1376 (2008)

    Article  Google Scholar 

  9. 9.

    G.D. Bixler, B. Bhushan, Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter 8, 11271–11284 (2012)

    ADS  Article  Google Scholar 

  10. 10.

    D. Panchanathan, A. Rajappan, K.K. Varanasi, G.H. McKinley, Plastron regeneration on submerged superhydrophobic surfaces using in situ gas generation by chemical reaction. ACS Appl. Mater. Interfaces 10, 33684–33692 (2018)

    Article  Google Scholar 

  11. 11.

    L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24, 4114–4119 (2008)

    Article  Google Scholar 

  12. 12.

    M. Li, Y. Li, F. Xue, X. Jing, A robust and versatile superhydrophobic coating: wear-resistance study upon sandpaper abrasion. Appl. Surf. Sci. 480, 738–748 (2019)

    ADS  Article  Google Scholar 

  13. 13.

    T. Xiang, D. Chen, Z. Lv, Z. Yang, L. Yang, C. Li, Robust superhydrophobic coating with superior corrosion resistance. J. Alloys Compd. 798, 320–325 (2019)

    Article  Google Scholar 

  14. 14.

    A. Tripathy, S. Kumar, G. Sreedharan, A. Muralidharan, D. Pramanik, P. Nandi, Sen, Fabrication of low-cost flexible superhydrophobic antibacterial surface with dual-scale roughness. ACS Biomater. Sci. Eng. 4, 2213–2223 (2018)

    Article  Google Scholar 

  15. 15.

    L. Tie, J. Li, M. Liu, Z. Guo, Y. Liang, W. Liu, Facile fabrication of superhydrophobic and underwater superoleophobic coatings. ACS Appl. Nano Mater. 1, 4894–4899 (2018)

    Article  Google Scholar 

  16. 16.

    J.T. Han, Y. Jang, D.Y. Lee, J.H. Park, S.-H. Song, D.-Y. Ban, K. Cho, Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development. J. Mater. Chem. 15, 3089–3092 (2005)

    Article  Google Scholar 

  17. 17.

    Z. Huang, Y. Quan, J. Mao, Y. Wang, Y. Lai, J. Zheng, Z. Chen, K. Wei, H. Li, Multifunctional superhydrophobic composite materials with remarkable mechanochemical robustness, stain repellency, oil–water separation and sound absorption properties. Chem. Eng. J. 358, 1610–1619 (2019)

    Article  Google Scholar 

  18. 18.

    E. Liu, X. Yin, J. Hu, S. Yu, Y. Zhao, W. Xiong, Fabrication of a biomimetic hierarchical superhydrophobic Cu–Ni coating with self-cleaning and anti-corrosion properties. Colloids Surf. A Physicochem. Eng. Asp. (2019). https://doi.org/10.1016/j.colsurfa.2019.124223

    Article  Google Scholar 

  19. 19.

    W. Tang, D. Sun, S. Liu, B. Li, W. Sun, J. Fu et al., One step electrochemical fabricating of the biomimetic graphene skins with superhydrophobicity and superoleophilicity for highly efficient oil–water separation. Sep. Purif. Technol. (2020). https://doi.org/10.1016/j.seppur.2019.116293

    Article  Google Scholar 

  20. 20.

    S.M. Beschnidt, C. Cacaci, K. Dedeoglu, D. Hildebrand, H. Hulla, G. Iglhaut et al., Implant success and survival rates in daily dental practice: 5-year results of a noninterventional study using CAMLOG SCREW-LINE implants with or without platform-switching abutments. Int J Implant Dent 4, 33 (2018)

    Article  Google Scholar 

  21. 21.

    X. Liu, S. Chen, J.K.H. Tsoi, J.P. Matinlinna, Binary titanium alloys as dental implant materials-a review. Regen Biomater 4, 315–323 (2017)

    Article  Google Scholar 

  22. 22.

    H. Mohajerani, R. Roozbayani, S. Taherian, R. Tabrizi, The risk factors in early failure of dental implants: a retrospective study. J. Dent. (Shiraz, Iran) 18, 298–303 (2017)

    Google Scholar 

  23. 23.

    R. Figueiredo, O. Camps-Font, E. Valmaseda-Castellon, C. Gay-Escoda, Risk factors for postoperative infections after dental implant placement: a case–control study. J. Oral Maxillofac. Surg. 73, 2312–2318 (2015)

    Article  Google Scholar 

  24. 24.

    C. Hannig, M. Hannig, The oral cavity a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin. Oral Investig. 13, 123–139 (2009)

    Article  Google Scholar 

  25. 25.

    N. Hori, T. Ueno, H. Minamikawa, F. Iwasa, F. Yoshino, K. Kimoto et al., Electrostatic control of protein adsorption on UV-photofunctionalized titanium. Acta Biomater. 6, 4175–4180 (2010)

    Article  Google Scholar 

  26. 26.

    S.R. Sousa, M. Lamghari, P. Sampaio, P. Moradas-Ferreira, M.A. Barbosa, Osteoblast adhesion and morphology on TiO2 depends on the competitive preadsorption of albumin and fibronectin. J. Biomed. Mater. Res. A 84, 281–290 (2008)

    Article  Google Scholar 

  27. 27.

    I.S.V. Marques, V.A.R. Barão, N.C. da Cruz, J.C. Yuan, M.F. Mesquita, A.P. Ricomini-Filho et al., Electrochemical behavior of bioactive coatings on cp-Ti surface for dental application. Corros. Sci. 100, 133–146 (2015)

    Article  Google Scholar 

  28. 28.

    B.E. Nagay, C. Dini, J.M. Cordeiro, A.P. Ricomini-Filho, E.D. de Avila, E.C. Rangel et al., Visible-light-induced photocatalytic and antibacterial activity of TiO(2) codoped with nitrogen and bismuth: new perspectives to control implant-biofilm-related diseases. ACS Appl. Mater. Interfaces 22(20), 18186–18202 (2019)

    Article  Google Scholar 

  29. 29.

    F.C. Walsh, R. Wood, F.C. Walsh, C.T.J. Low, R.J.K. Wood, K.T. Stevens et al., Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Trans. Inst. Met. Finish. 87, 122–135 (2009)

    Article  Google Scholar 

  30. 30.

    T. Ogawa, Ultraviolet photofunctionalization of titanium implants. Int. J. Oral Maxillofac. Implants 29, 95–102 (2014)

    Article  Google Scholar 

  31. 31.

    B. Cortat, C.C.M. Garcia, A. Quinet, A.P. Schuch, K.M. de Lima-Bessa, C.F.M. Menck, The relative roles of DNA damage induced by UVA irradiation in human cells. PhotochemPhotobiol Sci 12, 1483–1495 (2013)

    Article  Google Scholar 

  32. 32.

    H. Aita, N. Hori, M. Takeuchi, T. Suzuki, M. Yamada, M. Anpo et al., The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 30, 1015–1025 (2009)

    Article  Google Scholar 

  33. 33.

    W. Att, N. Hori, F. Iwasa, M. Yamada, T. Ueno, T. Ogawa, The effect of UV-photofunctionalization on the time-related bioactivity of titanium and chromium–cobalt alloys. Biomaterials 30, 4268–4276 (2009)

    Article  Google Scholar 

  34. 34.

    C. Dini, B.E. Nagay, J.M. Cordeiro, N.C. da Cruz, E.C. Rangel, A.P. Ricomini-Filho et al., UV-photofunctionalization of a biomimetic coating for dental implants application. Mater. Sci. Eng. C 110, 110657 (2020). https://doi.org/10.1016/j.msec.2020.110657

    Article  Google Scholar 

  35. 35.

    M.F.C. Coelho, L.L. de Sousa, C.C. Ferreira, B.F.G. de Souza, E.C.S. Rigo, N.A. Mariano, Biomimetic coating on titanium: evaluation of bioactivity and corrosion. Mater. Res. Express (2020). https://doi.org/10.1088/2053-1591/ab67f1

    Article  Google Scholar 

  36. 36.

    H.D. Barth, E.A. Zimmermann, E. Schaible, S.Y. Tang, T. Alliston, R.O. Ritchie, Characterization of the effects of X-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials 32, 8892–8904 (2011)

    Article  Google Scholar 

  37. 37.

    P. Milovanovic, E.A. Zimmermann, C. Riedel, A. vom Scheidt, L. Herzog et al., Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone. Biomaterials 45, 46–55 (2015)

    Article  Google Scholar 

  38. 38.

    E.A. Zimmermann, B. Gludovatz, E. Schaible, B. Busse, R.O. Ritchie, Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials 35, 5472–5481 (2014)

    Article  Google Scholar 

  39. 39.

    H.D. Barth, M.E. Launey, A.A. MacDowell, J.W. Ager, R.O. Ritchie, On the effect of X-ray irradiation on the deformation and fracture behavior of human cortical bone. Bone 46, 1475–1485 (2010)

    Article  Google Scholar 

  40. 40.

    M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi et al., 3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience. Adv. Mater. (2019). https://doi.org/10.1002/adma.201902930

    Article  Google Scholar 

  41. 41.

    I.-H. Tseng, Z.-C. Liu, P.-Y. Chang, Bio-friendly titania-grafted chitosan film with biomimetic surface structure for photocatalytic application. Carbohyd. Polym. (2019). https://doi.org/10.1016/j.carbpol.2019.115584

    Article  Google Scholar 

  42. 42.

    W. Barthlott, M. Mail, B. Bhushan et al., Plant surfaces: structures and functions for biomimetic innovations. Nano-Micro Lett. 9, 23 (2017). https://doi.org/10.1007/s40820-016-0125-1

    ADS  Article  Google Scholar 

  43. 43.

    E. Cabiscol Catala, J. Tamarit Sumalla, J.R. Salvador, Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 3, 3–8 (2000)

    Google Scholar 

  44. 44.

    R.F. Burk, Biological activity of selenium. Annu. Rev. Nutr. 3, 53–70 (1983)

    Article  Google Scholar 

  45. 45.

    R. Breslow, Artificial enzymes. Science 218, 532–537 (1982)

    ADS  Article  Google Scholar 

  46. 46.

    Q. Xu, C. He, C. Xiao, X. Chen, Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol. Biosci. 16, 635–646 (2016)

    Article  Google Scholar 

  47. 47.

    T.A. Brown, A. Shrift, Selenium: toxicity and tolerance in higher plants. Biol. Rev. 57, 59–84 (1982)

    Article  Google Scholar 

  48. 48.

    J. Xia, T. Li, C. Lu, H. Xu, Selenium-containing polymers: perspectives toward diverse applications in both adaptive and biomedical materials. Macromolecules 51, 7435–7455 (2018)

    ADS  Article  Google Scholar 

  49. 49.

    J. Tian, Q. Liu, A.M. Asiri, A.H. Qusti, A.O. Al-Youbi, X. Sun, Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic. Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 5, 11604–11609 (2013)

    ADS  Article  Google Scholar 

  50. 50.

    X. Wang, S. Blechert, M. Antonietti, Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2, 1596–1606 (2012)

    Article  Google Scholar 

  51. 51.

    X.-N. Cao, S. Lian, Y. Tong, W. Lin, L. Jia, Y. Fang, X. Wang, Fluorescent Se-modified carbon nitride nanosheets as biomimetic catalase for free-radical scavenging. Chem. Commun. (2019). https://doi.org/10.1039/c9cc08665j

    Article  Google Scholar 

  52. 52.

    X. Zhao, Z. Chen, Y. Liu, Q. Huang, H. Zhang, W. Ji, J. Ren, J. Li, Y. Zhao, Silk fibroin microparticles with hollow mesoporous silica nanocarriers encapsulation for abdominal wall repair. Adv. Healthc. Mater. 7, e1801005 (2018)

    Article  Google Scholar 

  53. 53.

    W. Zhang, Y. Li, D. Jiang, S. Xie, M. Zeng, J. Chen, L. Chen, H. Ouyang, X. Zou, Promotion of hernia repair with high-strength, flexible, and bioresorbable silk fibroin mesh in a large abdominal hernia model. ACS Biomater. Sci. Eng. 4, 2067–2080 (2017)

    Article  Google Scholar 

  54. 54.

    J. Skrobot, L. Zair, M. Ostrowski, M. El Fray, New injectable elastomeric biomaterials for hernia repair and their biocompatibility. Biomaterials 75, 182–192 (2016)

    Article  Google Scholar 

  55. 55.

    Z. Song, Z. Peng, Z. Liu, J. Yang, R. Tang, Y. Gu, Reconstruction of abdominal wall musculofascial defects with small intestinal submucosa scaffolds seeded with tenocytes in rats. Tissue Eng. Pt. A. 19, 1543–1553 (2013)

    Article  Google Scholar 

  56. 56.

    L. Da, M. Gong, A. Chen, Y. Zhang, Y. Huang, Z. Guo, S. Li, J. Li-Ling, L. Zhang, H. Xie, Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Acta Biomater. 59, 45–57 (2017)

    Article  Google Scholar 

  57. 57.

    W. Jiang, J. Zhang, X. Lv, C. Lu, H. Chen, X. Xu, W. Tang, Use of small intestinal submucosal and acellular dermal matrix grafts in giant omphaloceles in neonates and a rabbit abdominal wall defect model. J. Pediatr. Surg. 51, 368–373 (2016)

    Article  Google Scholar 

  58. 58.

    M.G. Franz, The biology of hernias and the abdominal wall. Hernia 10, 462–471 (2006)

    Article  Google Scholar 

  59. 59.

    G. Cao, C. Wang, Y. Fan, X. Li, Biomimetic SIS-based biocomposites with improved biodegradability, antibacterial activity and angiogenesis for abdominal wall repair. Mater. Sci. Eng., C 109, 110538 (2020)

    Article  Google Scholar 

  60. 60.

    J.F. Patrick, M.J. Robb, N.R. Sottos, J.S. Moore, S.R. White, Nature 540, 363 (2016)

    ADS  Article  Google Scholar 

  61. 61.

    Z. Liu, L. Zhang, Q. Guan, Y. Guo, J. Lou, D. Lei et al., Biomimetic materials with multiple protective functionalities. Adv. Func. Mater. (2019). https://doi.org/10.1002/adfm.201901058

    Article  Google Scholar 

  62. 62.

    A.J. Salgado, O.P. Coutinho, R.L. Reis, Bone tissue engineering: state of the art and future trends. Macromol. Biosci. 4(8), 743–765 (2004)

    Article  Google Scholar 

  63. 63.

    Q.L. Loh, C. Choong, Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. B Rev. 19(6), 485–502 (2013)

    Article  Google Scholar 

  64. 64.

    N. Golafshan, H. Gharibi, M. Kharaziha, M. Fathi, A facile one-step strategy for development of a double network fibrous scaffold for nerve tissue engineering. Biofabrication 9(2), 025008 (2017)

    ADS  Article  Google Scholar 

  65. 65.

    M. Diba, M. Kharaziha, M. Fathi, M. Gholipourmalekabadi, A. Samadikuchaksaraei, Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration. Compos. Sci. Technol. 72(6), 716–723 (2012)

    Article  Google Scholar 

  66. 66.

    T.G. Kim, H. Shin, D.W. Lim, Biomimetic scaffolds for tissue engineering. Adv. Funct. Mater. 22(12), 2446–2468 (2012)

    Article  Google Scholar 

  67. 67.

    S. Naghieh, E. Foroozmehr, M. Badrossamay, M. Kharaziha, Combinational processing of 3D printing and electrospinning of hierarchical poly (lactic acid)/gelatinforsterite scaffolds as a biocomposite: mechanical and biological assessment. Mater. Des. 133, 128–135 (2017)

    Article  Google Scholar 

  68. 68.

    M. Kharaziha, M. Nikkhah, Spatial patterning of stem cells to engineer microvascular networks, microscale technologies for cell engineering (Springer, Berlin, 2016), pp. 143–166

    Google Scholar 

  69. 69.

    M. Kharaziha, M. Fathi, H. Edris, Development of novel aligned nanofibrous composite membranes for guided bone regeneration. J. Mech. Behav. Biomed. Mater. 24, 9–20 (2013)

    Article  Google Scholar 

  70. 70.

    S. Li, A. Abdel-Wahab, V.V. Silberschmidt, Analysis of fracture processes in cortical bone tissue. Eng. Fract. Mech. 110, 448–458 (2013)

    Article  Google Scholar 

  71. 71.

    J.G. Hardy, C.E. Ghezzi, R.J. Saballos, D.L. Kaplan, C.E. Schmidt, Supracolloidal assemblies as sacrificial templates for porous silk-based biomaterials. Int. J. Mol. Sci. 16(9), 20511–20522 (2015)

    Article  Google Scholar 

  72. 72.

    Y. Liu, J.H. Kim, D. Young, S. Kim, S.K. Nishimoto, Y. Yang, Novel template-casting technique for fabricating ß-tricalcium phosphate scaffolds with high interconnectivity and mechanical strength and in vitro cell responses. J. Biomed. Mater. Res. A 92(3), 997–1006 (2010)

    Google Scholar 

  73. 73.

    H. Luo, Y. Zhang, G. Li, J. Tu, Z. Yang, G. Xiong, Z. Wang, Y. Huang, Y. Wan, Sacrificial template method for the synthesis of three-dimensional nanofibrous 58S bioglass scaffold and its in vitro bioactivity and cell responses. J. Biomater. Appl. 32(2), 265–275 (2017)

    Article  Google Scholar 

  74. 74.

    J. Cadman, S. Zhou, Y. Chen, W. Li, R. Appleyard, Q. Li, Characterization of cuttlebone for a biomimetic design of cellular structures. Acta Mech. Sinica 26(1), 27–35 (2010)

    ADS  MATH  Article  Google Scholar 

  75. 75.

    S. Saravanan, N. Selvamurugan, Bioactive mesoporous wollastonite particles for bone tissue engineering. J. Tissue Eng. 7, 2041731416680319 (2016)

    Article  Google Scholar 

  76. 76.

    M. Eilbagi, R. Emadi, K. Raeissi, M. Kharaziha, A. Valiani, Mechanical and cytotoxicity evaluation of nanostructured hydroxyapatite-bredigite scaffolds for bone regeneration. Mater. Sci. Eng. C 68, 603–612 (2016)

    Article  Google Scholar 

  77. 77.

    J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23), 4817–4827 (2005)

    Article  Google Scholar 

  78. 78.

    P. Gentile, V. Chiono, I. Carmagnola, P. Hatton, An overview of poly (lactic-coglycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 15(3), 3640–3659 (2014)

    Article  Google Scholar 

  79. 79.

    T.C. Schumacher, E. Volkmann, R. Yilmaz, A. Wolf, L. Treccani, K. Rezwan, Mechanical evaluation of calcium–zirconium–silicate (baghdadite) obtained by a direct solid-state synthesis route. J. Mech. Behav. Biomed. Mater. 34, 294–301 (2014)

    Article  Google Scholar 

  80. 80.

    S. Das, S.J. Hollister, C. Flanagan, A. Adewunmi, K. Bark, C. Chen, K. Ramaswamy, D. Rose, E. Widjaja, Freeform fabrication of Nylon-6 tissue engineering scaffolds. Rapid Prototyp. J. 9(1), 43–49 (2003)

    Article  Google Scholar 

  81. 81.

    V. Abbasian, R. Emadi, M. Kharaziha, Biomimetic nylon 6-baghdadite nanocomposite scaffold for bone tissue engineering. Mater. Sci. Eng., C 109, 110549 (2020). https://doi.org/10.1016/j.msec.2019.110549

    Article  Google Scholar 

  82. 82.

    R. Wang, J. Li, W. Chen, T. Xu, S. Yun, Z. Xu, Z. Xu, T. Sato, B. Chi, H. Xu, A biomimetic mussel-inspired ɛ-poly-l-lysine hydrogel with robust tissue-anchor and anti-infection capacity. Adv. Funct. Mater. 27, 1604894 (2017)

    Article  Google Scholar 

  83. 83.

    C. Mao, Y. Xiang, X. Liu, Z. Cui, X. Yang, K.W.K. Yeung, H. Pan, X. Wang, P.K. Chu, S. Wu, Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures. ACS Nano 11, 9010–9021 (2017)

    Article  Google Scholar 

  84. 84.

    R. Li, R. Niu, J. Qi, H. Yuan, Y. Fan, H. An, W. Yan, H. Li, Y. Zhan, C. Xing, Conjugated polythiophene for rapid, simple, and high-throughput screening of antimicrobial photosensitizers. ACS Appl. Mater. Interfaces 7, 14569–14572 (2015)

    Article  Google Scholar 

  85. 85.

    P.H. Kouwer, M. Koepf, V.A. Le Sage, M. Jaspers, A.M. van Buul, Z.H. Eksteen-Akeroyd, T. Woltinge, E. Schwartz, H.J. Kitto, R. Hoogenboom et al., Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 493, 651–655 (2013)

    ADS  Article  Google Scholar 

  86. 86.

    J.P. Winer, S. Oake, P.A. Janmey, Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS ONE 4, 6382 (2009)

    ADS  Article  Google Scholar 

  87. 87.

    H. Yuan, Y. Zhan, A.E. Rowan, C. Xing, P.H.J. Kouwer, Biomimetic networks with enhanced photodynamic antimicrobial activity from conjugated polythiophene/polyisocyanide hybrid hydrogels. Angew. Chem. Int. Ed. (2020). https://doi.org/10.1002/anie.201910979

    Article  Google Scholar 

  88. 88.

    P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mat. Res. 12(1), 1–39 (2009)

    Article  Google Scholar 

  89. 89.

    D.S. Kohane, R. Langer, Polymeric biomaterials in tissue engineering. Pediatr. Res. 63(5), 487–491 (2008)

    Article  Google Scholar 

  90. 90.

    C. Rinoldi, E. Kijenska, A. Chlanda, E. Choinska, N. Khenoussi, A. Tamayol, A. Khademhosseini, W. Wiszkowski, Nanobeads-on-string composites for tendon tissue engineering. J. Mater. Chem. B. 6, 3116–3127 (2018)

    Article  Google Scholar 

  91. 91.

    S.K. Motwani, S. Chopra, S. Talegaonkar, K. Kohli, F.J. Ahmad, R.K. Khar, Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimization and in vitro characterisation. Eur. J. Pharm. Biopharm. 68, 513–525 (2008)

    Google Scholar 

  92. 92.

    Q.F. Dang, S.H. Zou, X.G. Chen, C.S. Liu, J.J. Li, X. Zhou, Y. Liu, X.J. Cheng, Characterizations of chitosan-based highly porous hydrogel—the effects of the solvent. J. Appl. Polym. Sci. 125, E88–E98 (2012)

    Article  Google Scholar 

  93. 93.

    S.J. Florczyk, D.J. Kim, D.L. Wood, M. Zhang, Influence of processing parameters on pore structure of 3D porous chitosan–alginate polyelectrolyte complex scaffolds. J. Biomed. Mat. Res. Part A. 98A, 614–620 (2011)

    Article  Google Scholar 

  94. 94.

    S.L. Patwekar, P. Jamkhande, S.G. Gattani, S.A. Payghan, Nanobiocomposite: a new approach to drug delivery system. Asian J. Pharm. 10(4), 646–656 (2016)

    Google Scholar 

  95. 95.

    D. Moura, J.F. Mano, M.C. Paivac, N.M. Alves, Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications. Sci. Tech. Adv. Mater. 17(1), 626–643 (2016)

    Article  Google Scholar 

  96. 96.

    S. Karthik, P. Siva, K.S. Balu, R. Suriyaprabha, V. Rajendran, M. Maaza, Acalypha indica-mediated green synthesis of ZnO nanostructures under differential thermal treatment: effect on textile coating, hydrophobicity, UV resistance, and antibacterial activity. Adv. Powder Technol. 28, 3184–3194 (2017)

    Article  Google Scholar 

  97. 97.

    G. Nandhini, R. Suriyaprabha, W.M.S. Pauline, V. Rajendran, W.K. Aicher, O.K. Awitor, Influence of solvents on the changes in structure, purity, and in vitro characteristics of green-synthesized ZnO nanoparticles from Costus igneus. Appl. Nanosci. 8, 1353–1360 (2018)

    ADS  Article  Google Scholar 

  98. 98.

    R. Suriyaprabha, K.S. Balu, S. Karthik, M. Prabhu, V. Rajendran, W.K. Aicher, M. Maaza, A sensitive refining of in vitro and in vivo toxicological behavior of green synthesized ZnO nanoparticles from the shells of Jatropha curcas for multifunctional biomaterials development. Ecotox. Environ. Saf. 184, 109621 (2019)

    Article  Google Scholar 

  99. 99.

    M. Kulkarni, A. Mazare, E. Gongadze, S. Perutkova, V. Kralj-Iglic, I. Milošev, P. Schmuki, C. Iglic, M. Mozetic, Titanium nanostructures for biomedical applications. Nanotechnology 26(6), 1–18 (2015)

    Article  Google Scholar 

  100. 100.

    K.S. Balu, R. Suriyaprabha, S. Karthik, S. Surendhiran, W.K. Aicher, V. Rajendran, Biomimetic TiO2–chitosan/sodium alginate blended nanocomposite scaffolds for tissue engineering applications. Mater. Sci. Eng. C (2020). https://doi.org/10.1016/j.msec.2020.110710

    Article  Google Scholar 

  101. 101.

    S. Bose, G. Fielding, S. Tarafder, A. Bandyopadhyay, Trace element doping in calcium phosphate ceramics to understand osteogenesis and angiogenesis. Trends Biotechnol. 31, 594–605 (2013)

    Article  Google Scholar 

  102. 102.

    E. Boanini, M. Gazzano, A. Bigi, Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 6, 1882–1894 (2010)

    Article  Google Scholar 

  103. 103.

    F. Scalera, B. Palazzo, A. Barca, F. Gervas, Sintering of magnesium–strontium doped hydroxyapatite nanocrystals: towards the production of 3D biomimetic bone scaffolds. J. Biomed. Res. 108, 633–644 (2019)

    Google Scholar 

  104. 104.

    M. Socka, A. Michalski, I.M. Pelin, A. Pawlak, F. Tanasa, T. Biela, M. Basko, Preparation of biomimetic composites of hydroxyapatite and star-shaped poly(2,2-dimethyl trimethylene carbonate)s terminated with carboxyl end-groups. Polymer 186, 122078 (2020)

    Article  Google Scholar 

  105. 105.

    H. Ehrlicha, M. Ilan, M. Maldonado, G. Muricy, G. Bavestrello et al., Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. Int. J. Biol. Macromol. 47, 132–140 (2010)

    Article  Google Scholar 

  106. 106.

    T. Machałowski, M. Wysokowski, S. Żółtowska-Aksamitowska, N. Bechmann, B. Binnewerg et al., Spider Chitin. The biomimetic potential and applications of Caribena versicolor tubular chitin. Carbohyd. Polym. 226, 115301 (2019)

    Article  Google Scholar 

  107. 107.

    M. Wysokowski, I. Petrenko, A.L. Stelling, D. Stawski, T. Jesionowski, H. Ehrlich, Chitin as a versatile template for extreme biomimetics. Polymers 7, 235–265 (2015)

    Article  Google Scholar 

  108. 108.

    M. Wysokowski, M. Motylenko, J. Beyer et al., Extreme biomimetic approach for developing novel chitin–GeO2 nanocomposites with photoluminescent properties. Nano Res. 8, 2288–2301 (2015)

    Article  Google Scholar 

  109. 109.

    T. Jesionowski, M. Norman, S. Żółtowska-Aksamitowska, I. Petrenko, Y. Joseph, H. Ehrlich, Marine spongin: naturally prefabricated 3D scaffold-based biomaterial. Marine Drugs 16, 88 (2018)

    Article  Google Scholar 

  110. 110.

    H. Ehrlich, M. Wysokowski, S. Żółtowska-Aksamitowska, I. Petrenko, T. Jesionowski, Collagens of poriferan origin. Marine Drugs 16, 79 (2018)

    Article  Google Scholar 

  111. 111.

    M. Schubert, B. Binnewerg, A. Voronkina, L. Muzychka, M. Wysokowski, N.P.M. Biomaterials, Isolation and applications of flat chitinous 3D scaffolds from Ianthella labyrinthus (Demospongiae: Verongiida). Int. J. Mol. Sci. 20, 5105 (2019)

    Article  Google Scholar 

  112. 112.

    B. Binnewerg, M. Schubert, A. Voronkina, L. Muzychka, M. Wysokowski, Marine biomaterials: biomimetic and pharmacological potential of cultivated Aplysina aerophoba marine demosponge. Mater. Sci. Eng. C 109, 110566 (2020)

    Article  Google Scholar 

  113. 113.

    T. Szatkowski, M. Wysokowski, G. Lota, D. Pęziak, V.V. Bazhenov et al., Novel nanostructured hematite–spongin composite developed using extreme biomimetic approach. RSC Adv. 5, 79031–79040 (2015)

    Article  Google Scholar 

  114. 114.

    T. Szatkowski, K. Siwinska-Stefanska, M. Wysokowski, A.L. Stelling, Y. Joseph et al., Immobilization of titanium(IV) oxide onto 3D spongin scaffolds of marine sponge origin according to extreme biomimetics principles for removal of C.I. Basic Blue 9. Biomimetics 2, 4 (2017)

    Article  Google Scholar 

  115. 115.

    T. Szatkowski, K. Kopczyński, M. Motylenko et al., Extreme biomimetics: a carbonized 3D spongin scaffold as a novel support for nanostructured manganese oxide(IV) and its electrochemical applications. Nano Res. 11, 4199–4214 (2018)

    Article  Google Scholar 

  116. 116.

    I. Petrenko, V.V. Bazhenov, R. Galli, M. Wysokowski, J. Fromont et al., Chitin of poriferan origin and the bioelectrometallurgy of copper/copper oxide. Int. J. Biol. Macromol. 104(Pt B), 1626–1632 (2017)

    Article  Google Scholar 

  117. 117.

    I. Petrenko, A.P. Summers, P. Simon, S. Żółtowska-Aksamitowska, M. Motylenko, Extreme biomimetics: preservation of molecular detail in centimetre scale samples of biological meshes laid down by sponges. Sci. Adv. 5, eaax2805 (1–11) (2019)

    ADS  Article  Google Scholar 

  118. 118.

    K. Yin, C. Gao, J.-L. Qiu, Progress and prospects in plant genome editing. Nat Plants 3(8), 17107 (2017)

    Article  Google Scholar 

  119. 119.

    H. Yin, W. Xue, S. Chen, R.L. Beograd, E. Benedetti, M. Grompe, V. Koteliansky, P.A. Sharp, T. Jacks, D.G. Anderson, Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32(6), 551 (2014)

    Article  Google Scholar 

  120. 120.

    W. Jiang, D. Bikard, D. Cox, F. Zhang, L.A. Marraffini, RNA guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31(3), 233 (2013)

    Article  Google Scholar 

  121. 121.

    S.W. Cho, S. Kim, J.M. Kim, J.-S. Kim, Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31(3), 230 (2013)

    Article  Google Scholar 

  122. 122.

    R. Rouet, B.A. Thuma, M.D. Roy, N.G. Lintner, D.M. Rubitski, J.E. Finley, H.M. Wisniewska, R. Mendonsa, A. Hirsh, L. de Oñate, Receptor-mediated delivery of CRISPR-Cas9 endonuclease for cell-type-specific gene editing. J. Am. Chem. Soc. 140(21), 6596–6603 (2018)

    Article  Google Scholar 

  123. 123.

    D. Wells, Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther. 11(18), 1363 (2004)

    Article  Google Scholar 

  124. 124.

    B. Lee, K. Lee, S. Panda, R. Gonzales-Rojas, A. Chong, V. Bugay, H.M. Park, R. Brenner, N. Murthy, H.Y. Lee, Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat. Biomed. Eng. 2(7), 497 (2018)

    Article  Google Scholar 

  125. 125.

    W. Sun, W. Ji, J.M. Hall, Q. Hu, C. Wang, C.L. Beisel, Z. Gu, Self-assembled DNA nanoclews for the efficient delivery of CRISPR–Cas9 for genome editing. Angew. Chem. Int. Ed. 54(41), 12029–12033 (2015)

    Article  Google Scholar 

  126. 126.

    M.Z. Alyami, S.K. Alsaiari, Y. Li, S.S. Qutub, F.A. Aleisa, R. Sougrat et al., Cell-type-specific CRISPR/Cas9 delivery by biomimetic metal organic frameworks. J. Am. Chem. Soc. (2020). https://doi.org/10.1021/jacs.9b11638

    Article  Google Scholar 

  127. 127.

    M. Wu, X. Liu, H. Bai, L. Lai, Q. Chen, G. Huang, B. Liu, G. Tang, Surface-layer proteins enhanced immunotherapy based on cell membrane coated nanoparticles for the effective inhibition of tumor growth and metastasis. ACS Appl. Mater. Interfaces. 11, 9850–9859 (2019)

    Article  Google Scholar 

  128. 128.

    R.H. Fang, C.-M.J. Hu, B.T. Luk, W. Gao, J.A. Copp, Y. Tai, D.E. O’Connor, L. Zhang, Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 14(4), 2181–2188 (2014)

    ADS  Article  Google Scholar 

  129. 129.

    S.-Y. Li, H. Cheng, B.-R. Xie, W.-X. Qiu, J.-Y. Zeng, C.-X. Li, S.-S. Wan, L. Zhang, W.-L. Liu, X.-Z. Zhang, Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11(7), 7006–7018 (2017)

    Article  Google Scholar 

  130. 130.

    E. Stride, N. Saffari, Microbubble ultrasound contrast agents: a review. Proc. Inst. Mech. Eng. Part H 217, 429 (2003)

    Article  Google Scholar 

  131. 131.

    Q. Feng, W. Zhang, X. Yang, Y. Li, Y. Hao, H. Zhang, L. Hou, Z. Zhang, pH/ultrasound dual-responsive gas generator for ultrasound imaging-guided therapeutic inertial cavitation and sonodynamic therapy. Adv. Healthc. Mater. 7, 1700957 (2018)

    Article  Google Scholar 

  132. 132.

    L. Rao, Q.-F. Meng, L.-L. Bu, B. Cai, Q. Huang, Z.-J. Sun, W.-F. Zhang, A. Li, S.-S. Guo, W. Liu, T.-H. Wang, X.-Z. Zhao, Size-dependent facilitation of cancer cell targeting by proteins adsorbed on nanoparticles. ACS Appl. Mater. Interfaces 9, 2159 (2017)

    Article  Google Scholar 

  133. 133.

    M.L.P. Vidallon, A.M. Douek, A. Quek, H. McLiesh, J. Kaslin, R.F. Tabor et al., Gas-generating, pH-responsive calcium carbonate hybrid particles with biomimetic coating for contrast-enhanced ultrasound imaging. Part. Part. Syst. Charact. (2020). https://doi.org/10.1002/ppsc.201900471

    Article  Google Scholar 

  134. 134.

    B.-Y. Lee, J. Kim, H. Kim, C. Kim, S.-D. Lee, Low-cost flexible pressure sensor based on dielectric elastomer film with micro-pores. Sens. Actuators A 240, 103–109 (2016)

    Article  Google Scholar 

  135. 135.

    M. Ha, S. Lim, J. Park, D.-S. Um, Y. Lee, H. Ko, Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Adv. Funct. Mater. 25, 2841–2849 (2015)

    Article  Google Scholar 

  136. 136.

    R. Shi, Z. Lou, S. Chen, G. Shen, Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Sci. China Mater. 61, 1587–1595 (2018)

    Article  Google Scholar 

  137. 137.

    A. Shirinov, W.K. Schomburg, Pressure sensor from a PVDF film. Sens. Actuators A 142, 48–55 (2008)

    Article  Google Scholar 

  138. 138.

    C. Metzger, E. Fleisch, J. Meyer, M. Dansachmüller, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, S. Bauer, Highly sensitive tactile sensors integrated with organic transistors. Appl. Phys. Lett. 92, 013506 (2008)

    ADS  Article  Google Scholar 

  139. 139.

    Y. Joo, J. Byun, N. Seong, J. Ha, H. Kim, S. Kim, T. Kim, H. Im, D. Kim, Y. Hong, Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 7, 6208–6215 (2015)

    ADS  Article  Google Scholar 

  140. 140.

    G. Schwartz, B.C.-K. Tee, J. Mei, A.L. Appleton, D.H. Kim, H. Wang, Z. Bao, Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4 (1859)

    Google Scholar 

  141. 141.

    C. Mahata, H. Algadi, J. Lee, S. Kim, T. Lee, Biomimetic-inspired micro-nano hierarchical structures for capacitive pressure sensor applications. Measurement (2019). https://doi.org/10.1016/j.measurement.2019.107095

    Article  Google Scholar 

  142. 142.

    Y. Hou, H. Chang, K. Song, C. Lu, P. Zhang, Y. Wang, Q. Wang, W. Rao, J. Liu, Coloration of liquid–metal soft robots: from silver-white to iridescent. ACS Appl. Mater. Interfaces. 10(48), 41627–41636 (2018)

    Article  Google Scholar 

  143. 143.

    Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu, J. Zhai, C. Pan, Z.L. Wang, Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9(1), 244 (2018)

    ADS  Article  Google Scholar 

  144. 144.

    C. Ma, W. Lu, X. Yang, J. He, X. Le, L. Wang, J. Zhang, M.J. Serpe, Y. Huang, T. Chen, Bioinspired anisotropic hydrogel actuators with on–off switchable and color-tunable fluorescence behaviors. Adv. Funct. Mater. 28(7), 1704568 (2018)

    Article  Google Scholar 

  145. 145.

    S.J. Kim, O. Kim, M.J. Park, True low-power self-locking soft actuators. Adv. Mater. 30(12), e1706547 (2018)

    Article  Google Scholar 

  146. 146.

    L. Zhang, J. Pan, Y. Liu, Y. Xu, Zhang, ANIR-UV responsive actuator with graphene oxide/microchannel-induced liquid crystal bilayer structure for biomimetic devices. ACS Appl. Mater. Interfaces (2020). https://doi.org/10.1021/acsami.9b20672

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Chandra Babu Naidu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suresh Kumar, N., Padma Suvarna, R., Chandra Babu Naidu, K. et al. A review on biological and biomimetic materials and their applications. Appl. Phys. A 126, 445 (2020). https://doi.org/10.1007/s00339-020-03633-z

Download citation

Keywords

  • Biomimetics
  • 3D scaffolds
  • Superhydrophobic nature
  • Extracellular matrix
  • Hydroxyapatite