Skip to main content
Log in

Extraction and pre-concentration of ketamine by using a three-dimensional spongin-based scaffold of the Haliclona sp. marine demosponge origin

  • T.C. Biological and Biomimetic Materials
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this research, a novel renewable biomaterial spongin of marine sponge origin has been used as adsorbent in a miniaturized method based on solid-phase extraction (SPE) for the pre-concentration and determination of ketamine. The subsequent determinations of ketamine have been performed by high-performance liquid chromatography. Various potential effective factors during extraction procedure including pH value, amount of adsorbent, elution volume and its type, washing volume and its ratio, extraction time and salt concentration of the sample solution were optimized. Under the optimized conditions, the linear dynamic range for ketamine determination was 10–1000 ng mL−1. The relative standard deviation (RSD%, n = 5) for determination of ketamine (20 ng mL−1) was 2.8%, and the calculated limit of detection was 1.7 ng mL−1. The developed SPE procedure has been successfully applied for analysis of ketamine in water, urine and apple juice samples with high precision and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.M. Zahedi et al., Microchim. Acta 179, 57 (2012)

    Google Scholar 

  2. M. Rahimi-Nasrabadi, M.M. Zahedi, S.M. Pourmortazavi, Z. Nazari, A. Banan, A. Asghari, Microchim. Acta 180, 973 (2012)

    Google Scholar 

  3. H. Farahani, M. Shokouhi, M. Rahimi-nasrabadi, Toxicol. Environ. Chem. 2248, 1 (2016)

    Google Scholar 

  4. S. Sadeghi, V. Ashoori, J. Sci. Food Agric. 13, 4635 (2017)

    Google Scholar 

  5. A. Larki, M.R. Nasrabadi, N. Pourreza, Forensic Sci. Int. 41, 166 (2016)

    Google Scholar 

  6. M. Rahimi-nasrabadi et al., Microchim. Acta 177, 145 (2012)

    Google Scholar 

  7. B. Maddah, S.S. Javadi, A. Mirzaei, M. Rahimi-Nasrabadi, J. Liq. Chromatogr. Relat. Technol. 38, 208 (2015)

    Google Scholar 

  8. M. Norman et al., Materials 8, 96 (2015)

    ADS  Google Scholar 

  9. T. Jesionowski, M. Norman, S. Zółtowska-Aksamitowska, I. Petrenko, Y. Yoseph, H. Ehrlich, Mar. Drugs 16, 88 (2018)

    Google Scholar 

  10. H. Ehrlich, M. Maldonado, T. Hanke, H. Meissner, R. Born, VDI-Berichte 1803, 287 (2003)

    Google Scholar 

  11. H. Ehrlich, H. Worch, Porifera Res. No, 303 (2007)

  12. R.K. Jha, X. Zi-rong, Mar. Drugs 2, 123 (2004)

    Google Scholar 

  13. D.W. Green, Biomed. Mater. 34010, 1 (2008)

    ADS  Google Scholar 

  14. M. Norman, S. Żółtowska-Aksamitowska, A. Zgoła-Grześkowiak, H. Ehrlich, T. Jesionowski, J. Hazard. Mater. 347, 78–88 (2018)

    Google Scholar 

  15. I. Petrenko et al., Sci. Adv. 5, eaax2805 (2019)

    ADS  Google Scholar 

  16. M. Norman, J. Zdarta, P. Bartczak, A. Piasecki, I. Petrenko, H. Ehrlich, T. Jesionowski, Open Chem. 14, 243–254 (2016)

    Google Scholar 

  17. T. Szatkowski, K. Siwińska-Stefańska, M. Wysokowski, A.L. Stelling, Y. Joseph, H. Ehrlich, T. Jesionowski, Biomimetics 2, 4 (2017)

    Google Scholar 

  18. M. Norman, P. Bartczak, J. Zdarta, H. Ehrlich, T. Jesionowski, Dyes Pigm. 134, 541 (2016)

    Google Scholar 

  19. M. Norman, P. Bartczak, J. Zdarta, W. Tomala, B. Żurańska, A. Dobrowolska, A. Piasecki, K. Czaczyk, H. Ehrlich, T. Jesionowski, Int. J. Mol. Sci. Sect. Mater. Sci. Nanotechnol. 17, 1564 (2016)

    Google Scholar 

  20. J. Zdarta, M. Norman, W. Smułek, D. Moszyński, E. Kaczorek, A.L. Stelling, H. Ehrlich, T. Jesionowski, Catalysts 7(5), 147 (2017)

    Google Scholar 

  21. H. Ehrlich et al., J. Mater. Chem. B 1, 5092 (2013)

    Google Scholar 

  22. T. Szatkowski, M. Wysokowski, G. Lota, D. Peziak, V.V. Bazhenov, G. Nowaczyk, J. Walter, S.L. Molodtsov, H. Stöcker, C. Himcinschi, I. Petrenko, A.L. Stelling, S. Jurga, T. Jesionowski, H. Ehrlich, RSC Adv. 5, 79031 (2015)

    ADS  Google Scholar 

  23. H.Z. Rofael, M.S. Abdel-rahman, J. Appl. Toxicol. 22, 123 (2002)

    Google Scholar 

  24. S. Sadaf, M. Tariq, Sci. Int. 20(3), 197 (2008)

    Google Scholar 

  25. C. Ahai, R. Huei, J. Anal. Toxicol. 28, 680 (2004)

    Google Scholar 

  26. Y. Fan, Y. Feng, S. Da, X. Gao, Analyst 129, 1065 (2004)

    ADS  Google Scholar 

  27. H.H. Lee, J.F. Lee, S.Y. Lin, P.H. Chen, B.H. Chen, J. Anal. Toxicol. 35, 162 (2011)

    Google Scholar 

  28. K. Lian et al., J. Chromatogr. A 1264, 104 (2012)

    Google Scholar 

  29. S.D. Brown, D.J. Rhodes, B.J. Pritchard, Forensic Sci. Int. 171, 142 (2007)

    Google Scholar 

  30. Y. Fan, Y. Feng, J. Zhang, S. Da, M. Zhang, J. Chromatogr. A 1074, 9 (2005)

    Google Scholar 

  31. S. Pedersen-bjergaard, K.E. Rasmussen, J. Sep. Sci. 24, 615 (2001)

    Google Scholar 

  32. F. Ahmadi, A. Akbar, M. Rahimi-nasrabadi, J. Chromatogr. A 1193, 26 (2008)

    Google Scholar 

  33. J.S. Fritz, Analytical Solid-Phase Extraction (Wiley, New York, 1999)

    Google Scholar 

  34. J.R. Dean, Extraction Methods for Environmental Analysis (Wiley, New York, 1998)

    Google Scholar 

  35. V.V. Bazhenov, G. Nowaczyk, J. Walter, S.L. Molodtsov, RSC Adv. 5, 79031 (2015)

    ADS  Google Scholar 

  36. T. Szatkowski et al., Nano Res. 11(8), 4199–4214 (2018)

    Google Scholar 

  37. S. Zhang, Y. Cui, J. Sun, Y. Xi, Anal. Methods 7, 4209 (2015)

    Google Scholar 

  38. E. Kim, J. Lee, S. Choi, M. Lim, H. Chung, Forensic Sci. Int. 174, 197 (2008)

    Google Scholar 

  39. T. Nema, E.Y. Chan, P.C. Ho, J. Sep. Sci. 34, 1041 (2011)

    Google Scholar 

  40. F. Xu, L. Liu, Forensic Sci. Res. 0, 1 (2017)

    Google Scholar 

  41. H. Choi, S. Baeck, M. Jang, S. Lee, H. Choi, H. Chung, Forensic Sci. Int. 215, 81 (2012)

    Google Scholar 

  42. P. Adamowicz, M. Kała, Forensic Sci. Int. 198, 39 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rahimi-Nasrabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashouri, V., Rahimi-Nasrabadi, M., Attaran Fariman, G. et al. Extraction and pre-concentration of ketamine by using a three-dimensional spongin-based scaffold of the Haliclona sp. marine demosponge origin. Appl. Phys. A 126, 421 (2020). https://doi.org/10.1007/s00339-020-03598-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03598-z

Keywords

Navigation