Enhanced photocatalytic activity of titania coatings fabricated at relatively low oxidation temperature with sulfate-acid-bath pretreatment

Abstract

With the purpose of enhancing the photocatalytic activity of titania (TiO2) coatings with low cost, a method of sulfuric-acid-bath pretreatment followed by simple oxidation in air has been proposed to fabricate TiO2 coatings. The effect of oxidation temperature on the crystal structure, surface morphologies and photocatalytic activity of TiO2 coatings was investigated, to figure out the suitable oxidation temperature. XRD and Raman’s results show that the phase transformation of TiO2 starts at 773 K. The surface morphologies of TiO2 coatings clearly show the porous-like structure at lower than 873 K. With raising the temperature, the photocatalytic activity of TiO2 coatings firstly increases, then decreases, and reaches the highest at relatively low oxidation temperature of 773 K.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    X. Wang, Z. Li, J. Shi, Y. Yu, Chem. Rev. 114, 9346–9384 (2014)

    Article  Google Scholar 

  2. 2.

    S. Ghosh, N.A. Kouame, L. Ramos, S. Remita, A. Dazzi, A. Deniset-Besseau, P. Beaunier, F. Goubard, P. Aubert, H. Remita, Nat. Mater. 14, 505–511 (2015)

    ADS  Article  Google Scholar 

  3. 3.

    X. Zhuo, L. Ze, Y. Li, L. Dong, Y. Zhao, J. Zhang, J. Photochem. Photobiol. C 36, 24–47 (2018)

    Article  Google Scholar 

  4. 4.

    Z. Zheng, J. Teo, X. Chen, H. Liu, Y. Yuan, E.R. Waclawik, Z. Zhong, H. Zhu, Chem. Eur. J. 16, 1202–1211 (2010)

    Article  Google Scholar 

  5. 5.

    Y. Hou, X. Li, Q. Zhao, G. Chen, C.L. Raston, Environ. Sci. Technol. 46, 4042–4050 (2012)

    ADS  Article  Google Scholar 

  6. 6.

    C. Wu, K. Tu, J. Deng, Y. Lo, C. Wu, Materials 10, 566 (2017)

    ADS  Article  Google Scholar 

  7. 7.

    Y. Li, J. Zhang, Laser Photonics Rev. 4, 517–528 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    S. Guan, L. Yamawaki, P. Zhang, X. Zhao, Top. Catal. 61, 1585–1590 (2018)

    Article  Google Scholar 

  9. 9.

    L. Nie, J. Yu, X. Li, B. Cheng, G. Liu, M. Jaroniec, Environ. Sci. Technol. 47, 2777–2783 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    M.A. Henderson, Surf. Sci. Rep. 66, 185–297 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    N.N. Rao, V. Chaturvedi, Ind. Eng. Chem. Res. 46, 4406–4414 (2007)

    Article  Google Scholar 

  12. 12.

    P.K. Surolia, R.J. Tayade, R.V. Jasra, Ind. Eng. Chem. Res. 49, 8908–8919 (2010)

    Article  Google Scholar 

  13. 13.

    W.K. Jo, R.J. Tayade, J. Environ. Chem. Eng. 4, 319–327 (2016)

    Article  Google Scholar 

  14. 14.

    Y. Lu, S. Guan, L. Hao, H. Yoshida, Coatings 5, 425–464 (2015)

    Article  Google Scholar 

  15. 15.

    M. Lee, Y. Park, Langmuir 35, 2066–2077 (2019)

    Article  Google Scholar 

  16. 16.

    J. Guo, X. Cai, Y. Li, R. Zhai, S. Zhou, P. Na, Chem. Eng. J. 221, 342–352 (2013)

    Article  Google Scholar 

  17. 17.

    X. Che, L. Liu, P. Yu, S. Mao, Science 331, 746–750 (2011)

    ADS  Article  Google Scholar 

  18. 18.

    S. Guan, L. Hao, Y. Lu, H. Yoshida, F. Pan, H. Asanuma, Mater. Sci. Semicond. Process. 41, 358–363 (2015)

    Article  Google Scholar 

  19. 19.

    M. Yan, F. Chen, J. Zhang, M. Anpo, J. Phys. Chem. 109, 8673–8678 (2005)

    Article  Google Scholar 

  20. 20.

    P. Periyat, D.E. McCormack, S.J. Hinder, S.C. Pillai, J. Phys. Chem. C 113, 3246–3253 (2009)

    Article  Google Scholar 

  21. 21.

    W. Zheng, X. Liu, Z. Yan, L. Zhu, ACS Nano 3, 115–122 (2009)

    Article  Google Scholar 

  22. 22.

    S. Guan, L. Hao, H. Yoshida, H. Asanuma, F. Pan, Y. Lu, J. Mater. Sci. Mater. Electron. 27, 3873–3879 (2016)

    Article  Google Scholar 

  23. 23.

    R.A. Spuur, H. Myers, Anal. Chem. 29, 760–762 (1957)

    Article  Google Scholar 

  24. 24.

    Y. Lu, K. Kobayashi, S. Guan, L. Hao, H. Yoshida, H. Asanuma, J. Chen, Mater. Sci. Semicond. Process. 30, 128–134 (2015)

    Article  Google Scholar 

  25. 25.

    Y. Zhou, C. Chen, N. Wang, Y. Li, H. Ding, J. Phys. Chem. C 120, 6116–6124 (2016)

    Article  Google Scholar 

  26. 26.

    L.K. Preethi, T. Mathews, M. Nand, S.N. Jha, C.S. Gopinath, S. Dash, Appl. Catal. B 218, 9–19 (2017)

    Article  Google Scholar 

  27. 27.

    T. Cottineau, H. Cachet, V. Keller, E.M.M. Sutter, Phys. Chem. Chem. Phys. 19, 31469–31478 (2017)

    Article  Google Scholar 

  28. 28.

    J. Zhang, Z. Pang, Q. Sun, X. Chen, X. Chen, Y. Zhu, M. Li, J. Wang, H. Qiu, X. Li, Y. Li, I.S. Chronakis, J. Alloys Compd. 802, 153128 (2020)

    Article  Google Scholar 

  29. 29.

    C.H. Nguyen, C.C. Fu, R.S. Juang, J. Clean. Prod. 202, 413–427 (2018)

    Article  Google Scholar 

  30. 30.

    F. Wu, X. Li, W. Liu, S. Zhang, Appl. Surf. Sci. 405, 60–70 (2017)

    ADS  Article  Google Scholar 

  31. 31.

    S. Guan, L. Hao, H. Yoshida, F. Pan, H. Asanuma, Y. Lu, Mater. Lett. 188, 55–58 (2017)

    Article  Google Scholar 

  32. 32.

    J. Fei, J. Li, Adv. Mater. 27, 314–319 (2015)

    Article  Google Scholar 

  33. 33.

    Y. Ding, L. Zhou, L. Mo, L. Jiang, L. Hu, Z. Li, S. Chen, S. Dai, Adv. Funct. Mater. 25, 5946–5953 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to Dr. Hyuma Masu and Dr. Sayaka Kado from Center for Analytical Instrumentation, Chiba University. There is no funding source for this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yun Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1527 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guan, S., Hao, L., Kasuga, S. et al. Enhanced photocatalytic activity of titania coatings fabricated at relatively low oxidation temperature with sulfate-acid-bath pretreatment. Appl. Phys. A 126, 561 (2020). https://doi.org/10.1007/s00339-020-03597-0

Download citation

Keywords

  • TiO2 coatings
  • Sulfuric-acid-bath pretreatment
  • Low temperature
  • Phase transformation
  • Photocatalytic activity