Skip to main content
Log in

Numerical simulation of an adaptive beam-shaping technique using a phase grating overlapped via a spatial light modulator for precision square–flat-top beam

  • S.I. : Current State-Of-The-Art in Laser Ablation
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Beam shape is a key parameter in process optimisation for all laser applications. Among these shapes, a square–flat-top beam is fundamental and is in high demand. To obtain a beam with an aimed structure, various beam-shaping methods have been developed. Among them, an adaptive beam-shaping technique that uses phase grating encoded on a spatial light modulator with spatial frequency filtering in the Fourier plane in a 4f system has been developed. In this paper, using precise and simple beam shaping to produce a square and flat-top beam, we examine in detail the phase grating structure via simulations. The directions of the grating vectors inside and outside of the aimed area, i.e. kg-inside and kg-outside, and the normal vectors of the square and flat-top area, i.e. k1 and k2, critically affect the separation of the extracted and residual components on the Fourier plane. To extract the high spatial frequency component for precise shaping, a non-parallel configuration of the grating vectors to the normal vectors of the square beam is found to be effective. This method ensures precision beam shaping as well as keeping of pulse width and wavefront over the shaped area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Nakata, T. Okada, M. Maeda, Jpn. J. Appl. Phys. Part 2 Lett 42, L1452 (2003)

    Article  Google Scholar 

  2. Y. Nakata, N. Miyanaga, K. Momoo, T. Hiromoto, Appl. Surf. Sci. 274, 27 (2013)

    Article  ADS  Google Scholar 

  3. Y. Nakata, T. Hiromoto, N. Miyanaga, Appl. Phys. A Mater. Sci. Process. 101, 471 (2010)

    Article  ADS  Google Scholar 

  4. N. Miyanaga, H. Azechi, T. Jitsuno, J. Kawanaka, Y. Fujimoto, H. Shiraga, K. Tsubakimoto, H. Kitamura, H. Matsuo, T. Sakamoto, Y. Izawa, K. Mima, K.A. Tanaka, R. Kodama, K. Kondo, H. Habara, T. Kanabe, J. Phys. IV 23, 1–8 (2006)

    Google Scholar 

  5. S. Sakata, S. Lee, H. Morita, T. Johzaki, H. Sawada, Y. Iwasa, K. Matsuo, K.F.F. Law, A. Yao, M. Hata, A. Sunahara, S. Kojima, Y. Abe, H. Kishimoto, A. Syuhada, T. Shiroto, A. Morace, A. Yogo, N. Iwata, M. Nakai, H. Sakagami, T. Ozaki, K. Yamanoi, T. Norimatsu, Y. Nakata, S. Tokita, N. Miyanaga, J. Kawanaka, H. Shiraga, K. Mima, H. Nishimura, M. Bailly-Grandvaux, J.J. Santos, H. Nagatomo, H. Azechi, R. Kodama, Y. Arikawa, Y. Sentoku, S. Fujioka, Nat. Commun. 9, 3937 (2018)

    Article  ADS  Google Scholar 

  6. S. Thomsen, B. Baldwin, E. Chi, J. Ellard, Proc. SPIE 2970, 287 (1997)

    Article  ADS  Google Scholar 

  7. P. Dainesi, J. Ihlemann, P. Simon, Appl. Opt. 36, 7080 (1997)

    Article  ADS  Google Scholar 

  8. J. Amako, K. Umetsu, H. Nakao, Appl. Opt. 40, 5643 (2001)

    Article  ADS  Google Scholar 

  9. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, B. Loiseaux, Opt. Lett. 30, 1479 (2005)

    Article  ADS  Google Scholar 

  10. Y. Hayasaki, T. Sugimoto, A. Takita, N. Nishida, Appl. Phys. Lett. 87, 20 (2005)

    Article  Google Scholar 

  11. V. Bagnoud, J.D. Zuegel, Opt. Lett. 29, 295 (2004)

    Article  ADS  Google Scholar 

  12. S.-W. Bahk, E. Fess, B.E. Kruschwitz, J.D. Zuegel, Opt. Express 18, 9151 (2010)

    Article  ADS  Google Scholar 

  13. K. Osawa, M. Yoshida, Y. Nakata, N. Miyanaga, A. Narazaki, T. Shoji, Y. Tsuboi, Proc. SPIE 10091, 100911C (2017)

    Article  Google Scholar 

  14. Y. Nakata, K. Osawa, N. Miyanaga, Sci. Rep. 9, 4640 (2019)

    Article  ADS  Google Scholar 

  15. Y. Nakata, K. Osawa, Japan Patent application 2018-117035 (2018)

  16. Y. Nakata, K. Osawa, International Application No. PCT/JP2019/024533 (2019)

Download references

Acknowledgements

This research was financially supported by the Japan Society for the Promotion of Science (JSPS) through a Grant-in-Aid for Scientific Research (B) (No. 16H038850) and Amada Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Nakata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakata, Y., Miyanaga, N. & Osawa, K. Numerical simulation of an adaptive beam-shaping technique using a phase grating overlapped via a spatial light modulator for precision square–flat-top beam. Appl. Phys. A 126, 317 (2020). https://doi.org/10.1007/s00339-020-03496-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03496-4

Keywords

Navigation