Synergistic effects of stretching/polarization temperature and electric field on phase transformation and piezoelectric properties of polyvinylidene fluoride nanofilms

Abstract

This study aims to investigate the dependence of crystalline structure and piezoelectric properties of polyvinylidene fluoride stretched films (up to four times their initial length) as a function of temperature, polarization under constant field as well as varying electric field at constant polarization temperature. X-ray diffraction analysis indicates that α → β phase transformation occurs below 80 °C; meanwhile, the crystallinity is improved with stretching temperature reaching 44% compared to 32% for un-stretched. FTIR analysis confirms the results obtained by XRD, as new functional groups, shift of peaks position as well as reduction in their relative intensity are observed. It is found that the piezoelectric coefficient (d33) decreases with increasing temperature, while it increases with the electric field. The obtained results are discussed on the basis of the dependence of (d33) as a function of phase (α + β + amorphous) composition and the degree of crystallinity associated with various vibrational modes and the arrangement of hydrogen and fluorine atoms (corresponding charge H+ and F) from either sides of PVDF skeleton chains arising upon the influence of thermomechanical treatment, polarization and electric field.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    A.J. Lovinger, Science 220, 1115–1121 (1983)

    ADS  Google Scholar 

  2. 2.

    M. Abbasipour, R. Khajavi, A.A. Yousefi, M.E. Yazdanshenas, F. Razaghian, J. Mater. Sci. Mater. Electron. 28, 15942–15952 (2017)

    Google Scholar 

  3. 3.

    A. Gaur, R.B. Shukla Kumar, A. Pal, S. Chatterji, R. Ranjan, P. Maiti, Polymer 97, 362–369 (2016)

    Google Scholar 

  4. 4.

    F. Lui, N.A. Hashim, Y. Liu, M. Abed, K. Li, J. Membr. Sci. 375, 1–27 (2011)

    Google Scholar 

  5. 5.

    P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683–706 (2014)

    Google Scholar 

  6. 6.

    E.Z. Zhang, P. Beard, Proc. SPIE. 5320, 222–229 (2004)

    ADS  Google Scholar 

  7. 7.

    D. Le, W. Yun, IEEE 5, 129–132 (2015)

    Google Scholar 

  8. 8.

    S. Garain, S. Jana, T.K. Sinha, D. Mandal, ACS Appl. Mater. Interfaces 8, 4532–4540 (2016)

    Google Scholar 

  9. 9.

    Y.J. Yang, S. Aziz, S.M. Mehdi, M. Sajid, S. Jagadeesan, K.H. Choi, J. Electron. Mater. 46, 4172–4173 (2017)

    ADS  Google Scholar 

  10. 10.

    D. Beyssen, L.B. Le, O. Elmazria, P. Alnot, Sens. Actuators 118, 380–385 (2006)

    Google Scholar 

  11. 11.

    Y. Wang, X. Zhou, Q. Chen, B. Chu, Q. Zhang, IEE Trans. Dielectr. Electr. Insul. 17, 1036–1042 (2010)

    Google Scholar 

  12. 12.

    B. Ameduri, Chem. Rev. 109, 6632–6686 (2009)

    Google Scholar 

  13. 13.

    M. Lopez, H. Sanchez, Microelectron. J. 39, 1306–1307 (2008)

    Google Scholar 

  14. 14.

    R. Gregorio Jr., R.C. Capitao, J. Mater. Sci. 35, 299–306 (2000)

    ADS  Google Scholar 

  15. 15.

    Z. Cui, N.T. Hassankiadeh, Y. Zhuang, E. Drioli, Y.M. Lee, Prog. Polym. Sci. 51, 94–126 (2015)

    Google Scholar 

  16. 16.

    N. An, H. Liu, Y. Ding, M. Zhang, Y. Tang, Appl. Surf. Sci. 257, 3831–3835 (2011)

    ADS  Google Scholar 

  17. 17.

    S. Jiang, H. Wan, H. Liu, Y. Zeng, J. Liu, Y. Wu, G. Zhang, Appl. Phys. Lett. 109, 102904 (2016)

    ADS  Google Scholar 

  18. 18.

    R. Song, G. Xia, L. He, Q. Zhao, Z. Ma, J. Colloid Interface 401, 50–57 (2013)

    ADS  Google Scholar 

  19. 19.

    P. Atorngitjawat, Macromol. Res. 25, 391–399 (2017)

    Google Scholar 

  20. 20.

    V. Prateek, K. Thakur, R.K. Gupta, Chem. Rev. 116, 4260–4317 (2016)

    Google Scholar 

  21. 21.

    J.P. Jung, J.S. Kim, T.S. Han, J.H. Kim, Macromol. Res. 25, 365–373 (2017)

    Google Scholar 

  22. 22.

    V. Neburchilov, J. Martin, H. Wang, J. Zhang, J. Power Sources 169, 221–238 (2007)

    ADS  Google Scholar 

  23. 23.

    R. Gregorio Jr., M. Cestari, J. Polym. Sci. Part B Polym. Phys. 32, 859–870 (1994)

    ADS  Google Scholar 

  24. 24.

    L. Li, M.Q. Zhang, M.Z. Rong, W.H. Ruan, RSC Adv. 4, 3938–3943 (2014)

    Google Scholar 

  25. 25.

    L.L. Sun, B. Li, Z.G. Zhang, W.H. Zhong, Eur. Polym. J. 46, 2112–2119 (2010)

    Google Scholar 

  26. 26.

    Y. Ahn, J.Y. Lim, S.M. Hong, J. Lee, J. Ha, H.J. Choi, Y. Seo, J. Phys. Chem. C 117, 11791–11799 (2013)

    Google Scholar 

  27. 27.

    J.Y. Lim, J. Kim, S. Kim, S. Kwak, Y. Lee, Y. Seo, Polymer 62, 11–18 (2015)

    Google Scholar 

  28. 28.

    R. Ding, L. Gong, M. Li, S. Chen, S. Zhan, X. Sun, C. Zhang, T. Shao, Macromol. Res. 26, 965–972 (2018)

    Google Scholar 

  29. 29.

    Y. Li, D. Zhang, S. Wang, Y. Zhan, J. Yin, X. Tao, X. Ge, S.C. Tjong, H.Y. Liu, Y.W. Mai, Compos. Sci. Technol. 171, 152–161 (2019)

    Google Scholar 

  30. 30.

    B. Jiang, X. Pang, B. Li, Z. Lin, J. Am. Chem. Soc. 137, 11760–11767 (2015)

    Google Scholar 

  31. 31.

    A. Jain, K.J. Prashanth, A.K. Sharma, A. Jain, P.N. Rashmi, Polym. Eng. Sci. 55, 1589–1616 (2015)

    Google Scholar 

  32. 32.

    M.G. Broadhursi, G.T. Davies, J.E. Mckinney, R.E. Collins, J. Appl. Phys. 49, 4992–4997 (1978)

    ADS  Google Scholar 

  33. 33.

    N. Murayama, J. Polym. Sci. Part B Polym. Phys. Ed. 13, 929–946 (1975)

    ADS  Google Scholar 

  34. 34.

    G. Kang, Y. Cao, J. Membr. Sci. 463, 145–165 (2014)

    Google Scholar 

  35. 35.

    G.T. Davis, J.E. Mckinney, M.G. Broadhurst, S.C. Roth, J. Appl. Phys. 49, 4998–5002 (1978)

    ADS  Google Scholar 

  36. 36.

    P.D. Southgate, Phys Lett 28, 250–252 (1976)

    Google Scholar 

  37. 37.

    N. Murayama, H. Hashuzumi, J. Polym. Sci. Part B Polym. Phys. Ed. 14, 989–1003 (1976)

    ADS  Google Scholar 

  38. 38.

    J. Humphreys, E.L.V. Lewis, I.M. Ward, E.L. Nix, J.C. Mcgrath, J. Polym. Sci. Part B Polym. Phys. B26, 141–158 (1988)

    ADS  Google Scholar 

  39. 39.

    Y. Ye, Y. Jiang, W. Zhiming, H. Zeng, Integr. Ferroelectr. 80, 245–251 (2006)

    Google Scholar 

  40. 40.

    T. Vineet, S. Geetika, J. Polym. Res. 21, 587–595 (2014)

    Google Scholar 

  41. 41.

    R.A. Surmenev, T. Orlova, R.V. Chernozem, A.A. Ivanova, A. Bartasyte, S. Mathur, A.A. Surmeneva, Nano Energy 62, 475–506 (2019)

    Google Scholar 

  42. 42.

    X. Wang, C. Xiao, H. Liu, M. Chen, H. Xu, W. Luo, F. Zhang, J. Membr. Sci. 596, 117583 (2020)

    Google Scholar 

  43. 43.

    S. Kumar, V.S. Manikandan, A.K. Palai, S. Mohanty, S.K. Nayak, Solid State Ion. 332, 10–15 (2019)

    Google Scholar 

  44. 44.

    R. Arumugam, V. Subramanyam, R.K. Chinnadurai, E.S. Srinadhu, B. Subramanian, S. Nallani, Mater. Lett. 236, 694–696 (2019)

    Google Scholar 

  45. 45.

    R. Liuxia, Y. Xiannian, Ch. Yufang, Z. Lianqun, Q. Gaowu, Z. Xianmin, Polymers 10, 228 (2018)

    Google Scholar 

  46. 46.

    B. Mohammadi, A.A. Yousefi, S.M. Bellah, Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym. Test. 26, 42–50 (2007)

    Google Scholar 

  47. 47.

    V. Sencadas, R. Gregorio Jr., S. Lanceros, M. Endez, J. Macromol. Sci. Res. Part B Phys. 48, 514–525 (2009)

    ADS  Google Scholar 

  48. 48.

    M. Bachmann, W.L. Gordon, S. Weinhold, J.B. Lando, J. Appl. Phys. 51, 5095 (1980)

    ADS  Google Scholar 

  49. 49.

    T. Greeshma, R. Balaji, S. Jayakumar, Ferroelectr. Lett. 40, 41–55 (2013)

    Google Scholar 

  50. 50.

    B. Mattsson, H. Ericson, L.M. Torell, F. Sundholm, J. Polym. Sci. Part A Polym. Chem. 37, 3317–3327 (1999)

    ADS  Google Scholar 

  51. 51.

    F. Mokhtari, M. Shamshirsaz, M. Lati, Polym. Eng. Sci. 56, 61–70 (2016)

    Google Scholar 

  52. 52.

    S. Jana, S. Garain, S. Sen, D. Mandal, Phys. Chem. Chem. Phys. 17, 17429–17436 (2015)

    Google Scholar 

  53. 53.

    M. Sharma, G. Madras, S. Bose, Phys. Chem. Chem. Phys. 16, 14792–14970 (2014)

    Google Scholar 

  54. 54.

    T. Bocaccio, A. Bottino, G. Capanelli, P. Piaggio, J. Membr. Sci. 210, 315–329 (2002)

    Google Scholar 

  55. 55.

    M. El Achaby, F.E. Arrakhiz, S. Vaudreuil, E.M. Essassi, A. Qaiss, M. Bousmina, Polym. Eng. Sci. 53, 34–43 (2013)

    Google Scholar 

  56. 56.

    N. Jia, Q. Xing, G. Xia, J. Sun, R. Song, W. Huang, Mater. Lett. 139, 212–215 (2015)

    Google Scholar 

  57. 57.

    K. Ravikumar, G.P. Kar, S. Bose, B. Basu, RSC Adv. 6, 10837–10845 (2016)

    Google Scholar 

  58. 58.

    Y. Peng, P. Wu, Polymer 45, 5295–5299 (2004)

    Google Scholar 

  59. 59.

    A. Salimi, A. Yousefi, J. Polym. Sci. Part B Polym. Phys. 42, 3487–3495 (2004)

    ADS  Google Scholar 

  60. 60.

    Y. Liu, R.W. Truss, J. Polym. Sci. Part B Polym. Phys. 32, 2037–2047 (1994)

    ADS  Google Scholar 

  61. 61.

    V.A.M. Bershtein, V.M. Egorov, Differential Scanning Calorimetry of Polymers (Ellis Horwood Series, Chichester, 1994)

    Google Scholar 

  62. 62.

    K. Tashiro, K. Takano, M. Kobayashi, Y. Chatani, H. Tadokoro, Ferroelectrics 57, 297–326 (1984)

    Google Scholar 

  63. 63.

    K. Tashiro, K. Takano, M. Kobayashi, Y. Chatani, H. Tadokoro, Polymer 25, 195–208 (1984)

    Google Scholar 

  64. 64.

    P. Delzenne, These de Docteur-Ingénieur (PhD Thesis), Université de Grenoble, 1986, p. 233

  65. 65.

    A. Gasmi, C.Z. Lewa, S.T. Eetowski, Mater. Lett. 13, 346–351 (1992)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Bououdina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Debili, S., Gasmi, A. & Bououdina, M. Synergistic effects of stretching/polarization temperature and electric field on phase transformation and piezoelectric properties of polyvinylidene fluoride nanofilms. Appl. Phys. A 126, 309 (2020). https://doi.org/10.1007/s00339-020-03492-8

Download citation

Keywords

  • Polyvinylidene fluoride
  • Stretching temperature
  • Polarization
  • Phase transformation
  • Piezoelectric effect