Dual-band asymmetric transmission based on electromagnetically induced transparency (EIT) effect in a microstrip transmission line


A dual-band asymmetric transmission device based on the nonlinear electromagnetically induced transparency (EIT) effect is presented in this paper. The device structure is composed of two P-type branches and two split ring resonators (SRRs). Dual-band EIT effect is induced based on the destructive interferences between scattering fields of the SRRs and branches in a microstrip transmission line system. Moreover, nonlinear varactor diodes and the asymmetric absorption resistor are added to EIT structure based on microstrip line couplings, which results in the asymmetric transmission property. The 10 dB and 7.5 dB transmission light contrasts at the frequencies of 0.85 GHz and 0.95 GHz with the input power of − 3 dBm are demonstrated experimentally. Such low-loss, broadband and high-contrast asymmetric transmission device results from the EIT mechanism, which possesses narrower, sharper and higher transmittance features. Such results will be very beneficial for new nonlinear electromagnetic devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    I.V. Shadrivov, V.A. Fedotov, D.A. Powell, Y.S. KivsharE, N.I. Zheludev, Electromagnetic wave analogue of an electronic diode. New J. Phys. 13(3), 033025 (2011)

    ADS  Article  Google Scholar 

  2. 2.

    C. Huang, Y. J. Feng, L. X. Wu, J. M. Zhao and T Jiang, Diode-like Asymmetric Transmission of Linearly Polarized Waves through Twisted Split-ring Metamaterial Structure, in Proceedings of Asia Pacific Microwave Conference, vol 4C3-06, pp. 1157–1159 (2012)

  3. 3.

    A.E. Serebryannikov, K.B. Alici, T. Magath, A.O. Cakmak, E. Ozbay, Asymmetric Fabry-Perot-type transmission in photonic-crystal gratings with one-sided corrugations at a two-way coupling. Phys. Rev. A 86(5), 053835 (2012)

    ADS  Article  Google Scholar 

  4. 4.

    A. Radosavljevi, G. Gligori, A. Maluckov, M. Stepić, Control of light propagation in one-dimensional quasi-periodic nonlinear photonic lattices. J. Opt. 16(2), 025201 (2014)

    ADS  Article  Google Scholar 

  5. 5.

    C. Wang, C.Z. Zhou, Z.Y. Li, On-chip optical diode based on silicon photonic crystal heterojunctions. Opt. Express 19(27), 26948–26955 (2011)

    ADS  Article  Google Scholar 

  6. 6.

    Y.Q. Chen, L.J. Dong, X.H. Xu, J. Jiang, Y.L. Shi, Electromagnetic diode based on photonic crystal cavity with embedded highly dispersive meta-interface. J. Appl. Phys. 122(24), 244507 (2017)

    ADS  Article  Google Scholar 

  7. 7.

    X.Y. Yang, Y.Y. Jiang, The influence of EIT effect with double windows on electromagnetic characteristics of quasi-Λ-four-level atomic system. Opt. Commun. 285(8), 2161–2165 (2012)

    ADS  Article  Google Scholar 

  8. 8.

    S. Hu, D. Liu, H. Lin, A.J. Chen, Y.Y. Yi, H.L. Yang, Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial. J. Appl. Phys. 121(12), 123103 (2017)

    ADS  Article  Google Scholar 

  9. 9.

    G.Y. Ye, R. Hao, X.B. Lin, E.P. Li, Realizing the electromagnetically induced transparency (EIT)-like transmission with a single hole-ring resonator. Opt. Commun. 445, 101–105 (2018)

    ADS  Article  Google Scholar 

  10. 10.

    F. Bagci, B. Akaoglu, Single and multi-band electromagnetically induced transparency-like effects with a four-fold symmetric metamaterial design. Mater. Res. Express 6(5), 055806 (2019)

    ADS  Article  Google Scholar 

  11. 11.

    C.X. Liu, P.G. Liu, C. Yang, Y. Lin, H.Q. Liu, Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial. Carbon 142, 354–362 (2019)

    Article  Google Scholar 

  12. 12.

    W. Yu, H.Y. Meng, Z.J. Chen, X.P. Li, X. Zhang, F.Q. Wang, Z.C. Wei, C.H. Tan, X.G. Huang, S.T. Li, The bright-bright and bright-dark mode coupling-based planar metamaterial for plasmonic EIT-like effect. Opt. Commun. 414, 29–33 (2018)

    ADS  Article  Google Scholar 

  13. 13.

    S. Zheng, Z.S. Ruan, S.Q. Gao, Y. Long, S.M. Li, M.B. He, N. Zhou, J. Du, L. Shen, X.L. Cai, J. Wang, Compact tunable electromagnetically induced transparency and Fano resonance on silicon platform. Opt. Express 25(21), 25655–25662 (2017)

    ADS  Article  Google Scholar 

  14. 14.

    M.D. Guo, X.M. Su, Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system. Chin. Phys. B 26(7), 074207 (2017)

    ADS  Article  Google Scholar 

  15. 15.

    N. Muhammad, A.D. Khan, Electromagnetically induced transparency and sharp asymmetric fano line shapes in all-dielectric nanodimer. Plasmonics 12(5), 1399–1407 (2016)

    MathSciNet  Article  Google Scholar 

  16. 16.

    S.C. Zhao, Negative refraction with absorption suppressed by electromagnetically induced transparency in a left-handed atomic system. Sci. China Phys. Mechan. Astron. 55(2), 213–218 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    Q.H. Fu, F.L. Zhang, Y.C. Fan, J.J. Dong, W.Q. Cai, W. Zhu, S. Chen, R.S. Yang, Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory. Appl. Phys. Lett. 110(22), 221905 (2017)

    ADS  Article  Google Scholar 

  18. 18.

    Z.Y. Shen, T.Y. Xiang, J. Wu, Z.T. Yu, H.L. Yang, Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial. J. Magn. Magn. Mater. 476, 69–74 (2019)

    ADS  Article  Google Scholar 

  19. 19.

    X. Yan, M.S. Yang, Z. Zhang, L.J. Liang, D.Q. Wei, M. Wang, M.J. Zhang, T. Wang, L.H. Liu, J.H. Xie, J.Q. Yao, The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens. Bioelectron. 126, 485–492 (2019)

    Article  Google Scholar 

  20. 20.

    L. Zhu, L. Dong, J. Guo, F.Y. Meng, X.J. He, C.H. Zhao, Q. Wu, Polarization conversion based on mie-type electromagnetically induced transparency (EIT) effect in all-dielectric metasurface. Plasmonics 13(6), 1971–1976 (2018)

    Article  Google Scholar 

  21. 21.

    Y.Q. Cheng, Y.H. Li, K.J. Zhu, Y. Fang, X.Z. Wu, Y. Sun, Q.Y. Wu, Nonlinear properties of light-tunneling heterostructures embedded with a highly dispersive meta-molecule. Opt. Mater. Express 8(11), 3583 (2018)

    ADS  Article  Google Scholar 

  22. 22.

    Y.Q. Chen, K.J. Zhu, Y.H. Li, Y. Fang, Q.Y. Wu, Y. Sun, H. Chen, Nonlinear properties of photonic crystal cavity with embedded electromagnetic-induced transparency-like meta-atoms. Opt. Mater. Express 7(8), 3034 (2017)

    ADS  Article  Google Scholar 

  23. 23.

    H.M. Li, S.B. Liu, S.Y. Liu, S.Y. Wang, G.W. Ding, H. Yang, Z.Y. Yu, H.F. Zhang, Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response. Appl. Phys. Lett. 106(8), 083511 (2015)

    ADS  Article  Google Scholar 

  24. 24.

    L. Zhu, F.Y. Meng, L. Dong, Q. Wu, B.J. Che, J. Gao, J.H. Fu, K. Zhang, G.H. Yang, Magnetic metamaterial analog of electromagnetically induced transparency and absorption. J. Appl. Phys. 117(17), 17D146 (2015)

    Article  Google Scholar 

  25. 25.

    S. Zielińska-Raczyńska, D. Ziemkiewicz, Controlled EIT and signal storage in metamaterial with tripod structure. Appl. Phys. A Mater. Sci. Process. 123(1), 85 (2017)

    ADS  Article  Google Scholar 

  26. 26.

    H.L. Yang, S. Hu, D. Liu, H. Lin, B.X. Xiao, J. Chen, Manipulation of electromagnetically induced transparency by planar metamaterial. Appl. Phys. A Mater. Sci. Process. 122(2), 55 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    Y.C. Fan, T. Qiao, F.L. Zhang, Q.H. Fu, J.J. Dong, B.T. Kong, H.Q. Li, An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Sci. Rep. 7, 40441 (2017)

    ADS  Article  Google Scholar 

  28. 28.

    T. Nakanishia, M. Kitano, Storage and retrieval of electromagnetic waves using electromagnetically induced transparency in a nonlinear metamaterial. Appl. Phys. Lett. 112, 201905 (2018)

    ADS  Article  Google Scholar 

  29. 29.

    J.X. Chen, P. Wang, C.C. Chen, Y.H. Lu, H. Ming, Q.W. Zhan, Plasmonic EIT-like switching in bright-dark-bright plasmon resonators. Opt. Express 19(7), 5970–5978 (2011)

    ADS  Article  Google Scholar 

  30. 30.

    M. Amin, R. Ramzan, O. Siddiqui, Slow wave applications of electromagnetically induced transparency in microstrip resonator. Sci. Rep. 8(1), 2357 (2018)

    ADS  Article  Google Scholar 

  31. 31.

    L. Zhu, J.H. Fu, F.Y. Meng, X.M. Ding, L. Dong, Q. Wu, Detuned magnetic dipoles induced transparency in microstrip line for sensing. Inst. Electr. Electron. Eng. Trans. Magn. 50(1), 4000604 (2014)

    Google Scholar 

  32. 32.

    Y. Sun, Y.W. Tong, C.H. Xue, Y.Q. Ding, Y.H. Li, H.T. Jiang, H. Chen, Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials. Appl. Phys. Lett. 103(9), 091904 (2013)

    ADS  Article  Google Scholar 

  33. 33.

    Z.Y. Shen, T.Y. Xiang, N. Wu, J. Wu, Y. Tian, H.L. Yang, Dual-band electromagnetically induced transparency based on electric dipole-quadrupole coupling in metamaterials. J. Phys. D-Appl. Phys. 52(1), 015003 (2018)

    ADS  Article  Google Scholar 

  34. 34.

    L. Zhu, L. Dong, J. Guo, F.Y. Meng, X.J. He, C.H. Zhao, Q. Wu, A low-loss electromagnetically induced transparency (EIT) metamaterial based on coupling between electric and toroidal dipoles. R. Soc. Chem. Adv. 7(88), 55897–55904 (2017)

    Google Scholar 

  35. 35.

    Y.H. Guo, L.S. Yan, W. Pan, B. Luo, K.H. Wen, Z. Guo, X.G. Luo, Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators. Opt. Express 20(22), 24348–24355 (2012)

    ADS  Article  Google Scholar 

  36. 36.

    X.G. Yin, T.H. Feng, S. Yip, Z.X. Liang, A. Hui, J.C. Ho, J. Li, Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules. Appl. Phys. Lett. 103, 021115 (2013)

    ADS  Article  Google Scholar 

  37. 37.

    T.H. Feng, H.P. Han, Tunable transmission-line metamaterials mimicking electromagnetically induced transparency. J. Electron. Mater. 45(11), 6038–6042 (2016)

    ADS  Article  Google Scholar 

  38. 38.

    C. Huang, Y. J. Feng, L. X. Wu, J. M. Zhao and T Jiang, Diode-like asymmetric transmission of linearly polarized waves through twisted split-ring metamaterial structure, in Asia Pacific Microwave Conference, pp. 1157–1159 (2012)

  39. 39.

    Y.Y. Hu, W.X. Liu, Y. Sun, X. Shi, J. Jiang, Y.P. Yang, S.Y. Zhu, J. Evers, H. Chen, Electromagnetically-induced-transparency-like phenomenon with resonant meta-atoms in a cavity. Phys. Rev. A 92(5), 053824 (2015)

    ADS  Article  Google Scholar 

Download references


This work is supported by the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (Grant No. UNPYSCT-2017152).

Author information



Corresponding author

Correspondence to Lei Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Li, T.C., Zhang, Z.D. et al. Dual-band asymmetric transmission based on electromagnetically induced transparency (EIT) effect in a microstrip transmission line. Appl. Phys. A 126, 308 (2020). https://doi.org/10.1007/s00339-020-03488-4

Download citation


  • Dual-band
  • Electromagnetically induced transparency (EIT)
  • Asymmetric transmission