Skip to main content
Log in

A low-temperature limit for growth of ZnO nanowires by using of laser ablation processes

  • S.I. : Current State-Of-The-Art in Laser Ablation
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The contribution deals with growth of ZnO nanowires on metal catalysts by using of pulsed laser deposition and with the influence of growth temperature. The process of nanowires preparation comprised two technological steps—both were based on pulsed laser ablation processes: (1) production of metal nanoparticles by laser ablation in liquids and (2) pulsed laser deposition of ZnO nanowires by ablation of ZnO target on substrate with metal nanoparticles. Nanoparticles from various metals (Au, Ag, Ni, Cu, Al, Mg, Zn, Sn and BiSn alloy) were prepared by pulsed laser ablation at 1064 nm in deionised water. Colloids contained metal nanoparticles were applied on Si (100) substrates, and after drying, nanoparticles served as catalysts of VLS crystallisation. Temperatures in interval 600—200 °C were experimentally compared for the nanowires growth with applied ablation laser working at 248 nm. The lowest achieved temperature value for growth of ZnO nanowires was 425–450 °C. However, among applied metals Cu and Al nanoparticles only successfully catalysed ZnO nanowires at this temperature. Properties of prepared samples were investigated by scanning electron microscopy and photoluminescence. Experimental results revealed that along with the growth temperature, selection of proper metal catalyst is also important factor for nanowires crystallisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89–90 (1964)

    Article  ADS  Google Scholar 

  2. Z.L. Wang, Mater. Sci. and Eng. R 64, 33–71 (2009)

    Article  Google Scholar 

  3. J. Arbiol, Q. Xiong, Semiconductor Nanowires (Woodhead Publ, Cambridge, 2015), p. 409

    Google Scholar 

  4. S.A. Dayeh, A. Foncuberta I Morral, Ch Jagadish, Semicoductor Nanowires II: Properties and Applications (Academic Press, London, 2016), p. 297

    Google Scholar 

  5. W. Lu, J. Xiang, Semiconductor Nanowires; From Next-Generation Electronics to Sustainable Energy (RSC Press, Cambridge, 2015), p. 277

    Google Scholar 

  6. B. Tian, ChM Lieber, Chem. Rev. 119, 9136 (2019)

    Article  Google Scholar 

  7. B. Bhushan, Springer Handbook of Nanotechnology (Springer, Berlin, 2010), p. 99

    Book  Google Scholar 

  8. A. Foncuberta i Morral, S.A. Dayeh, C. Jagadish, Semicoductor Nanowires I: Growth and Theory (Academic Press, London, 2015), pp. 2–11

    Google Scholar 

  9. A. Zhang, G. Zheng, C.M. Lieber, Nanowires: Building Blocks for Nanoscience and Nanotechnology (Springer, Berlin, 2016), p. 16

    Book  Google Scholar 

  10. N.P. Dasgupta, J. Sun, Ch Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, P. Yang, Adv. Mater. 26, 2137 (2014)

    Article  Google Scholar 

  11. M. Lorenz, A. Rahm, B. Cao, J. Zuniga-Perez, E.M. Kaidashev, N. Zhakarov, G. Wagner, T. Nobis, Ch Czekalla, G. Zimmermann, M. Grundmann, Phys. Status Solidi B 247, 1265 (2010)

    Article  ADS  Google Scholar 

  12. A. Klamchuen, M. Suzuki, K. Nagashima, H. Yoshida, M. Kanai, F. Zhuge, Y. He, G. Meng, S. Kai, S. Takeda, T. Kawai, T. Yanagida, Nano Lett. 15, 6406 (2015)

    Article  ADS  Google Scholar 

  13. I. Amarilio-Burshtein, S. Tamir, Y. Lifshitz, Appl. Phys. Lett. 96, 103104 (2010)

    Article  ADS  Google Scholar 

  14. P.-H. Shih, S.Y. Wu, Nanomaterials 7(7), 188 (2017)

    Article  Google Scholar 

  15. A. Shkurmanov et al., Nanoscale Res. Lett. 12, 134 (2017)

    Article  ADS  Google Scholar 

  16. Y. Ming Huang, Q. Ma, B. Zhai, Mat. Lett. 93, 266 (2013)

    Article  Google Scholar 

  17. X. Wang, Q. Li, Z. Liu, J. Zhang, Z. Liu, R. Wang, Appl. Phys. Lett. 84, 4941 (2004)

    Article  ADS  Google Scholar 

  18. SCh Lyu, Y. Zhang, H. Ruh, H.-J. Lee, H.-W. Shim, E.-K. Suh, ChJ Lee, Chem. Phys. Lett. 363, 134 (2002)

    Article  ADS  Google Scholar 

  19. W.I. Park, G.-C. Yi, M. Kim, S.J. Pennycook, Adv. Mater. 14, 1841 (2002)

    Article  Google Scholar 

  20. G. Yang, Laser Ablation in Liquids (Pan Stanford Publication, Singapore, 2012), p. 328

    Book  Google Scholar 

  21. Z. Zhang, S.J. Wang, T. Yu, T. Wu, J. Phys. Chem. C 111, 17500 (2007)

    Article  Google Scholar 

  22. Z. Zhu, T.L. Chen, Y. Gu, J. Warren, R.M. Osgood, Chem. Mater. 17, 4227 (2005)

    Article  Google Scholar 

  23. F. Gao, Z. Gu, in Handbook of Nanoparticles, Ed. byM. Aliofkhazraei (Springer, London 2016), p.661

  24. F. Font, T.G. Myers, J. Nanopart. Res. 15, 2086 (2013)

    Article  ADS  Google Scholar 

  25. W.H. Qi, M.P. Wang, Mat. Chem. Phys. 88, 280 (2004)

    Article  Google Scholar 

  26. K. Nagashima, T. Yanagida, K. Oka, H. Tanaka, T. Kawai, Appl. Phys. Lett. 93, 153103 (2008)

    Article  ADS  Google Scholar 

  27. ChC Weigand, M.R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P.E. Vullum, J.C. Walmsley, Ø. Dahl, T.E. Furtak, R.T. Collins, J. Grepstad, H. Weman, Cryst. Growth & Design 11, 5298 (2011)

    Article  Google Scholar 

  28. C. Borchers, S. Muller, D. Stichtenoth, D. Schwen, C. Ronning, J. Phys. Chem. B 110, 1656 (2006)

    Article  Google Scholar 

  29. S.Y. Li, C.Y. Lee, T.Y. Tseng, J. Cryst. Growth 247, 357 (2003)

    Article  ADS  Google Scholar 

  30. Y.M. Huang, Q. Ma, B. Zhai, Mat. Lett. 93, 266 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by scientific projects VEGA–1/0714/18 (Pulsed laser deposition of metal oxide nanowires – advanced study) and APVV–17–0169 (Nanotechnology preparation of a MIS photoelectrode with metallic oxides for systems for production of solar fuels).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Bruncko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruncko, J., Michalka, M., Kovac, J. et al. A low-temperature limit for growth of ZnO nanowires by using of laser ablation processes. Appl. Phys. A 126, 305 (2020). https://doi.org/10.1007/s00339-020-03477-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03477-7

Keywords

Navigation